Исследована абсолютная параметрическая устойчивость системы сингулярно возмущенных дифференциальных уравнений. Построена матричнозначная функция, которая
позволяет установить указанное свойство системы. Определена область в пространстве параметров, для всех значений параметров из которой абсолютная параметрическая устойчивость рассматриваемой системы имеет место.
Дослiджено абсолютну параметричну стiйкiсть системи сингулярно збурених диференцiальних рiвнянь. Побудовано матричнозначну функцiю, яка дозволяє встановити вказану властивiсть системи. Визначено область у просторi параметрiв для всiх значень параметрiв, з якої абсолютна параметрична стiйкiсть системи, що розглядається, має мiсце.
The absolute parametric stability of a singularly perturbed system of differential equations is investigated. A matrix-valued function which gives an ability to hold such property of the system is built.
A region in the space of parameters, where the absolute parametrical stability of the investigated
system holds for all values of parameters is determined.