На базi класичної моделi Марковиця сформульовано векторну (багатокритерiальну) булеву задачу портфельної оптимiзацiї з критерiями «вузького мiсця» за умов ризику. Отримано нижню i верхню оцiнки досяжностi кiлькiсної характеристики такого типу стiйкостi задачi, що є дискретним аналогом напiвнеперервного зверху за Хаусдорфом точково-множинного вiдображення, що задає принцип оптимальностi за Парето.
Based on the classical Markowitz model, we formulate a vector (multicriterial) Boolean problem of the portfolio optimization with bottleneck criteria under risk conditions. We obtain the lower and upper attainable bounds for the quantitative characteristics of the type of stability of the problem, which is as a discrete analog of the Hausdorff upper semicontinuity of the many-valued mapping that define the Pareto optimality.