Показати простий запис статті
dc.contributor.author |
Жук, С.М. |
|
dc.date.accessioned |
2021-02-11T18:55:06Z |
|
dc.date.available |
2021-02-11T18:55:06Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами / С.М. Жук // Нелінійні коливання. — 2007. — Т. 10, № 4. — С. 464-480. — Бібліогр.: 19 назв. — укр. |
uk_UA |
dc.identifier.issn |
1562-3076 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/177210 |
|
dc.description.abstract |
Для линейного оператора D : W(F)₂ ⊂ L(n)₂ → L(m)₂ × R(m), порожденного дифференциальным уравнением
d/dt Fx (t) − C(t)x = f(t), F x(t₀) = f₀, установлена замкнутость графика, вычислен сопряженный оператор D^∗ : W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ . Для элементов линейных многовидов W(F)₂ ,W(F`)₂ предложен аналог формулы интегрирования по частям. Получен критерий существования псевдорешения операторного уравнения Dx(·) = (f(·), f₀), сформулированы достаточные
условия нормальной разрешимости оператора D в терминах соотношений для блоков матрицы C(t). Полученные результаты проиллюстрированы примерами |
uk_UA |
dc.description.abstract |
For a linear operator D : W(F)₂ ⊂ L(n)₂ → L(m)₂ × R(m), generated by the differential equation d/dt Fx (t) − C(t)x = f(t), F x(t₀) = f₀, we prove that its graph is closed and we calculate the adjoint operator
D^∗ : W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ . For elements of the linear manifolds W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ , we give an analogue of the
integration by part formula. We find a criterion for existence of a pseudo-solution of the operator equation
Dx(·) = (f(·), f₀), and formulate sufficient conditions for normal solvability of the operator D in terms
of relations between blocks of the matrix C(t). The obtained results are illustrated with examples. |
uk_UA |
dc.language.iso |
uk |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Нелінійні коливання |
|
dc.title |
Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами |
uk_UA |
dc.title.alternative |
Замкнутость и нормальная разрешимость оператора, порождённого вырожденным линейным дифференциальным уравнением с переменными коэффициентами |
uk_UA |
dc.title.alternative |
Closeness and normal solvability of the operator generated by a degenerate linear differential equation with variable coefficients |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
517.9 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті