Метод побудови гамільтонова опису для невиродженої (регулярної) варіаційної задані довільного, порядку, запропонований М. В. Остроградським, узагальнюється на випадок вироджених (сингулярних) лагранжіанів. Саме такі лагранжіани становлять найбільший інтерес для сучасної теорії елементарних частинок. Для спрощення формул розглядається гамільтонізація варіаційної задачі, заданої сингулярним лагранжіаном другого порядку. Рівняння руху в фазовому просторі виводяться шляхом узагальнення методу М. В. Остроградського. Знайдено повний;набір зв'язків у теорії.
We generalize the Ostrohrads'kyi method for the construction of the Hamiltonian description of a nondegenerate (regular) variational problem of arbitrary order to the case of degenerate (singular) Lagrangians. These Lagrangians are of major interest in the contemporary theory of elementary particles. For simplicity, we consider the Hamiltonization of a variational problem defined by a singular second-order Lagrangian. Generalizing the Ostrohrads'kyi method, we derive equations of motion in the phase space. We determine a complete collection of constraints of the theory.