Доказано, что при некоторых условиях регулярности асимптотическое распределение оценки Коенкера – Бассета совпадает с асимптотическим распределением интеграла от порожденного случайным процессом индикаторного процесса, взвешенного градиентом функции регресcии.
We prove that, under certain regularity conditions, the asymptotic distribution of the Koenker - Bassett estimator coincides with the asymptotic distribution of the integral of the indicator process generated by a random noise weighted by the gradient of the regression function.