Показано, що будь-який гомеоморфний розв’язок рiвняння Бельтрамi ∂¯f=μ∂f класу Соболєва Wⁱ,ⁱloc є так званим нижнiм Q-гомеоморфiзмом з Q(z)=Kμ(z), де Kμ — дилатацiйне вiдношення цього рiвняння. На цiй основi розвинено теорiю граничної поведiнки та усунення сингулярностей таких розв’язкiв.
We show that every homeomorphic solution of the Beltrami equation ∂¯f=μ∂f in the Sobolev class Wⁱ,ⁱloc is a so-called lower Q-homeomorphism with Q(z)=Kμ(z), where Kμ is a dilatation quotient of this equation. On this basis, we develop the theory of the boundary behavior and the removability of singularities of these solutions.