Показати простий запис статті
dc.contributor.author |
Карлова, О.О. |
|
dc.contributor.author |
Михайлюк, В.В. |
|
dc.date.accessioned |
2020-02-13T17:05:25Z |
|
dc.date.available |
2020-02-13T17:05:25Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
Хрест-топологія і трійки Лебеґа / О.О. Карлова, В.В. Михайлюк // Український математичний журнал. — 2013. — Т. 65, № 5. — С. 722–727. — Бібліогр.: 9 назв. — укр. |
uk_UA |
dc.identifier.issn |
1027-3190 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/165484 |
|
dc.description.abstract |
Крест-топологией y на произведении топологических пространств X и Y называется совокупность всех множеств G⊆X×Y, пересечение которых с каждой вертикалью и горизонталью является открытым подмножеством вертикали или горизонтали соответственно. Для пространств X и Y из некоторого класса пространств, содержащего все пространства Rⁿ, доказано, что существует раздельно непрерывная функция f : X × Y → (X × Y, γ), которая не является поточечным пределом последовательности непрерывных функций. Кроме того, установлено, что каждая раздельно непрерывная функция, заданная на произведении сильно нульмерного метризуемого и топологического пространств и принимающая значения в любом топологическом пространстве, является поточечным пределом последовательности непрерывных функций. |
uk_UA |
dc.description.abstract |
The cross topology γ on the product of topological spaces X and Y is the collection of all sets G ⊆ X × Y such that the intersections of G with every vertical line and every horizontal line are open subsets of the vertical and horizontal lines, respectively. For the spaces X and Y from a class of spaces containing all spaces Rⁿ, it is shown that there exists a separately continuous function f : X × Y → (X × Y, γ) which is not a pointwise limit of a sequence of continuous functions. We also prove that each separately continuous function is a pointwise limit of a sequence of continuous functions if it is defined on the product of a strongly zero-dimensional metrizable space and a topological space and takes values in an arbitrary topological space. |
uk_UA |
dc.language.iso |
uk |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Український математичний журнал |
|
dc.subject |
Короткі повідомлення |
uk_UA |
dc.title |
Хрест-топологія і трійки Лебеґа |
uk_UA |
dc.title.alternative |
Cross Topology and Lebesgue Triples |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
517.51 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті