Крест-топологией y на произведении топологических пространств X и Y называется совокупность всех множеств G⊆X×Y, пересечение которых с каждой вертикалью и горизонталью является открытым подмножеством вертикали или горизонтали соответственно. Для пространств X и Y из некоторого класса пространств, содержащего все пространства Rⁿ, доказано, что существует раздельно непрерывная функция f : X × Y → (X × Y, γ), которая не является поточечным пределом последовательности непрерывных функций. Кроме того, установлено, что каждая раздельно непрерывная функция, заданная на произведении сильно нульмерного метризуемого и топологического пространств и принимающая значения в любом топологическом пространстве, является поточечным пределом последовательности непрерывных функций.
The cross topology γ on the product of topological spaces X and Y is the collection of all sets G ⊆ X × Y such that the intersections of G with every vertical line and every horizontal line are open subsets of the vertical and horizontal lines, respectively. For the spaces X and Y from a class of spaces containing all spaces Rⁿ, it is shown that there exists a separately continuous function f : X × Y → (X × Y, γ) which is not a pointwise limit of a sequence of continuous functions. We also prove that each separately continuous function is a pointwise limit of a sequence of continuous functions if it is defined on the product of a strongly zero-dimensional metrizable space and a topological space and takes values in an arbitrary topological space.