Наукова електронна бібліотека
періодичних видань НАН України

Количественная форма C-свойства Лузина

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Кротов, В.Г.
dc.date.accessioned 2020-02-11T18:00:26Z
dc.date.available 2020-02-11T18:00:26Z
dc.date.issued 2010
dc.identifier.citation Количественная форма C-свойства Лузина / В.Г. Кротов // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 387–395. — Бібліогр.: 15 назв. — рос. uk_UA
dc.identifier.issn 1027-3190
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/165102
dc.description.abstract Доведено наступне твердження, яке є кількісною формою теореми Лузіна про C-властивість. Нехай (X,d,μ)—обмежений метричний простір із метрикою d і регулярною борелевого мірою μ, що пов'язані умовою подвоєння. Тоді для будь-якої вимірної на X функції f існують додатна зростаюча функція η∈Ω(η(+0)=0 і η(t)t−a спадає при деякому a>0), вимірна на X невід'ємна функція g та множина E⊂X,μE=0, для яких |f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X∖E. Якщо f∈Lp(X),p>0, то можна вибрати g∈Lp(X). uk_UA
dc.description.abstract We prove the following statement, which is a quantitative form of the Luzin theorem on C-property: Let (X, d, μ) be a bounded metric space with metric d and regular Borel measure μ that are related to one another by the doubling condition. Then, for any function f measurable on X, there exist a positive increasing function η ∈ Ω (η(+0) = 0 and η(t)t −a decreases for a certain a > 0), a nonnegative function g measurable on X, and a set E ⊂ X, μE = 0 , for which |f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X/E If f ∈ L p (X), p >0, then it is possible to choose g belonging to L p (X). uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Український математичний журнал
dc.subject Статті uk_UA
dc.title Количественная форма C-свойства Лузина uk_UA
dc.title.alternative Quantitative form of the Luzin C-property uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 517.5


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис