Доведено наступне твердження, яке є кількісною формою теореми Лузіна про C-властивість. Нехай (X,d,μ)—обмежений метричний простір із метрикою d і регулярною борелевого мірою μ, що пов'язані умовою подвоєння. Тоді для будь-якої вимірної на X функції f існують додатна зростаюча функція η∈Ω(η(+0)=0 і η(t)t−a спадає при деякому a>0), вимірна на X невід'ємна функція g та множина E⊂X,μE=0, для яких
|f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X∖E.
Якщо f∈Lp(X),p>0, то можна вибрати g∈Lp(X).
We prove the following statement, which is a quantitative form of the Luzin theorem on C-property: Let (X, d, μ) be a bounded metric space with metric d and regular Borel measure μ that are related to one another by the doubling condition. Then, for any function f measurable on X, there exist a positive increasing function η ∈ Ω (η(+0) = 0 and η(t)t −a decreases for a certain a > 0), a nonnegative function g measurable on X, and a set E ⊂ X, μE = 0 , for which
|f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X/E
If f ∈ L p (X), p >0, then it is possible to choose g belonging to L p (X).