Наукова електронна бібліотека
періодичних видань НАН України

Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Руденко, А.В.
dc.date.accessioned 2020-02-10T20:54:02Z
dc.date.available 2020-02-10T20:54:02Z
dc.date.issued 2004
dc.identifier.citation Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека / А.В. Руденко // Український математичний журнал. — 2004. — Т. 56, № 12. — С. 1654-1664. — Бібліогр.: 4 назв. — рос. uk_UA
dc.identifier.issn 1027-3190
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/164847
dc.description.abstract Вивчається поведінка мір, які є результатом дії пігрупи Орнштейна - Улеибека Tt, що пов'язана з гауссовою мірою μ, на довільну ймовірнісну міру ν у сепарабельному гільбертовому просторі, при t→0+. Доведено, що щільності абсолютно неперервних частин Ttν по відношенню до μ збігаються за мірою |і до щільності абсолютно неперервної частини V по підношенню до μ. У випадку скінченної вимірності простору доведено збіжність цих щільпостей μ-майже скрізь. У нескіпченновимірному випадку наведено деякі достатні умови для збіжності майже скрізь. Також розглянуто умови па абсолютну неперервність Ttν по відношенню до μ. у термінах коефіцієнтів розкладу Ttν в ряд за поліномами Ерміта (аналог розкладу Іто - Вінера) та зв'язок з фінітною абсолютною неперервністю. uk_UA
dc.description.abstract We study the behavior of measures obtained as a result of the action of the Ornstein-Uhlenbeck semigroup T t associated with the Gaussian measure μ on an arbitrary probability measure ν in a separable Hilbert space as t → 0+. We prove that the densities of the parts of T t ν absolutely continuous with respect to μ converge in the measure μ to the density of the part of ν absolutely continuous with respect to μ. For a finite-dimensional space, we prove the convergence of these densities μ-almost everywhere. In the infinite-dimensional case, we give sufficient conditions for almost-everywhere convergence. We also consider conditions on the absolute continuity of T t ν with respect to μ in terms of the coefficients of the expansion of T t ν in a series in Hermite polynomials (an analog of the Ito- Wiener expansion) and the connection with finite absolute continuity. uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Український математичний журнал
dc.subject Статті uk_UA
dc.title Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека uk_UA
dc.title.alternative Approximation of Densities of Absolutely Continuous Components of Measures in a Hilbert Space Using the Ornstein-Uhlenbeck Semigroup uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 519.21


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис