Показати простий запис статті
dc.contributor.author |
Oboudi, M.R. |
|
dc.date.accessioned |
2019-06-18T18:15:53Z |
|
dc.date.available |
2019-06-18T18:15:53Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
On the difference between the spectral radius and the maximum degree of graphs / M.R. Oboudi // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 302-307. — Бібліогр.: 17 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:05C31, 05C50, 15A18. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/156636 |
|
dc.description.abstract |
Let G be a graph with the eigenvalues λ₁(G)≥⋯≥λn(G). The largest eigenvalue of G, λ₁(G), is called the spectral radius of G. Let β(G)=Δ(G)−λ₁(G), where Δ(G) is the maximum degree of vertices of G. It is known that if G is a connected graph, then β(G)≥0 and the equality holds if and only if G is regular. In this paper we study the maximum value and the minimum value of β(G) among all non-regular connected graphs. In particular we show that for every tree T with n≥3 vertices, n−1−√(n−1) ≥ β(T) ≥ 4sin²(π/(2n+2)). Moreover, we prove that in the right side the equality holds if and only if T≅Pn and in the other side the equality holds if and only if T≅Sn, where Pn and Sn are the path and the star on n vertices, respectively. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On the difference between the spectral radius and the maximum degree of graphs |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті