Показати простий запис статті
dc.contributor.author |
Bar-Moshe, D. |
|
dc.date.accessioned |
2019-02-19T17:33:12Z |
|
dc.date.available |
2019-02-19T17:33:12Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
A Method for Weight Multiplicity Computation Based on Berezin Quantization / D. Bar-Moshe // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 22E46; 32M05; 32M10; 53D50; 81Q70 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149125 |
|
dc.description.abstract |
Let G be a compact semisimple Lie group and T be a maximal torus of G. We describe a method for weight multiplicity computation in unitary irreducible representations of G, based on the theory of Berezin quantization on G/T. Let Γhol(Lλ) be the reproducing kernel Hilbert space of holomorphic sections of the homogeneous line bundle Lλ over G/T associated with the highest weight λ of the irreducible representation πλ of G. The multiplicity of a weight m in πλ is computed from functional analytical structure of the Berezin symbol of the projector in Γhol(Lλ) onto subspace of weight m. We describe a method of the construction of this symbol and the evaluation of the weight multiplicity as a rank of a Hermitian form. The application of this method is described in a number of examples. |
uk_UA |
dc.description.sponsorship |
I would like to express my sincere gratitude to R. Pnini for his kind help and support. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A Method for Weight Multiplicity Computation Based on Berezin Quantization |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті