Анотація:
Let G be a compact semisimple Lie group and T be a maximal torus of G. We describe a method for weight multiplicity computation in unitary irreducible representations of G, based on the theory of Berezin quantization on G/T. Let Γhol(Lλ) be the reproducing kernel Hilbert space of holomorphic sections of the homogeneous line bundle Lλ over G/T associated with the highest weight λ of the irreducible representation πλ of G. The multiplicity of a weight m in πλ is computed from functional analytical structure of the Berezin symbol of the projector in Γhol(Lλ) onto subspace of weight m. We describe a method of the construction of this symbol and the evaluation of the weight multiplicity as a rank of a Hermitian form. The application of this method is described in a number of examples.