Показати простий запис статті

dc.contributor.author Dąbrowski, L.
dc.contributor.author Sitarz, A.
dc.date.accessioned 2019-02-13T17:27:07Z
dc.date.available 2019-02-13T17:27:07Z
dc.date.issued 2015
dc.identifier.citation An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 58B34; 46L87
dc.identifier.other DOI:10.3842/SIGMA.2015.075
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147144
dc.description.abstract We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici). uk_UA
dc.description.sponsorship L.D. gratefully acknowledges the hospitality of the Institute of Physics, Jagiellonian University in Krak´ow. L.D. partially supported by PRIN 2010 grant “Operator Algebras, Noncommutative Geometry and Applications”, A.S. partially supported by NCN grant 2012/06/M/ST1/00169. The authors express their gratitude to the referees for valuable comments. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title An Asymmetric Noncommutative Torus uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис