Показати простий запис статті
dc.contributor.author |
Dąbrowski, L. |
|
dc.contributor.author |
Sitarz, A. |
|
dc.date.accessioned |
2019-02-13T17:27:07Z |
|
dc.date.available |
2019-02-13T17:27:07Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 58B34; 46L87 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.075 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147144 |
|
dc.description.abstract |
We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici). |
uk_UA |
dc.description.sponsorship |
L.D. gratefully acknowledges the hospitality of the Institute of Physics, Jagiellonian University
in Krak´ow. L.D. partially supported by PRIN 2010 grant “Operator Algebras, Noncommutative
Geometry and Applications”, A.S. partially supported by NCN grant 2012/06/M/ST1/00169.
The authors express their gratitude to the referees for valuable comments. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
An Asymmetric Noncommutative Torus |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті