Показати простий запис статті
dc.contributor.author |
Dovgoshey, O. |
|
dc.contributor.author |
Martio, O. |
|
dc.contributor.author |
Ryazanov, V. |
|
dc.contributor.author |
Vuorinen, M. |
|
dc.date.accessioned |
2017-09-30T11:12:21Z |
|
dc.date.available |
2017-09-30T11:12:21Z |
|
dc.date.issued |
2004 |
|
dc.identifier.citation |
Uniqueness and topological properties of number representation / O. Dovgoshey, O. Martio, V. Ryazanov, M. Vuorinen // Український математичний вісник. — 2004. — Т. 1, № 3. — С. 331-348. — Бібліогр.: 12 назв. — англ. |
uk_UA |
dc.identifier.issn |
1810-3200 |
|
dc.identifier.other |
2000 MSC. 11A67. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/124622 |
|
dc.description.abstract |
Let b be a complex number with |b| > 1 and let D be a finite subset of the complex plane C such that 0 ∊ D and card D ≥ 2. A number z is representable by the system (D, b) if z = Σajbj , where aj ∊ D. We denote by F the set of numbers which are representable by (D, b) with M = −1. The set W consists of numbers that are (D, b) representable with aj = 0 for all negative j. Let F1 be a set of numbers in F that can be uniquely represented by (D, b). It is shown that: The set of all extreme points of F is a subset of F1. If 0 ∊ F1, then W is discrete and closed. If b ∊ {z : |z| > 1}\D′, where D′ is a finite or countable set associated with D and W is discrete and closed, then 0 ∊ F1. For a real number system (D, b), F is homeomorphic to the Cantor set C iff F\F1 is nowhere dense subset of R. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Український математичний вісник |
|
dc.title |
Uniqueness and topological properties of number representation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті