Uniqueness and topological properties of number representation

O. Dovgoshey, O. Martio, V. Ryazanov, M. Vuorinen

Abstract. Let b be a complex number with |b| > 1 and let D be a finite subset of the complex plane \mathbb{C} such that $0 \in D$ and card $D \geq 2$. A number z is representable by the system (D,b) if $z = \sum_{j=-\infty}^{M} a_j b^j$, where $a_j \in D$. We denote by F the set of numbers which are representable by (D,b) with M = -1. The set W consists of numbers that are (D,b) representable with $a_j = 0$ for all negative j. Let F_1 be a set of numbers in F that can be uniquely represented by (D,b). It is shown that: The set of all extreme points of F is a subset of F_1 . If $0 \in F_1$, then W is discrete and closed. If $b \in \{z : |z| > 1\} \setminus D'$, where D' is a finite or countable set associated with D and W is discrete and closed, then $0 \in F_1$. For a real number system (D,b), F is homeomorphic to the Cantor set C iff $F \setminus F_1$ is nowhere dense subset of \mathbb{R} .

2000 MSC. 11A67.

Key words and phrases. Representations of numbers, Cantor sets.

1. Introduction

Suppose we have a finite set D of complex numbers, $0 \in D$, card $D \ge 2$ and a number $b \in \mathbb{C}$, |b| > 1. We denote by F the set of "fractions" for the system (D, b) and by W the corresponding set of integers:

$$f \in F \iff f = \sum_{j=-\infty}^{-1} a_j b^j,$$
 (1.1)

$$w \in W \iff w = \sum_{j=0}^{M} k_j b^j,$$
 (1.2)

Received 11.02.2004

The first and third authors thank for the support Department of Mathematics of University of Helsinki

ISSN 1810 – 3200. © Інститут прикладної математики і механіки НАН України

 $\left(\mathcal{Y}_{\mathcal{M}}^{\mathcal{B}}\right)$

where a_i and k_j belong to D.

A "general" number q is representable by the system (D, b) iff

$$q = \sum_{j=-\infty}^{M} a_j b^j, \quad a_j \in D,$$
(1.3)

i.e., g = w + f, $w \in W$, $f \in F$. We shall write G for the set of all representable numbers, by definitions (1.1), (1.2) and (1.3)

G = F + W.

The definitions of F and W and various examples of real and complex number systems can be found in [4]. See also [3], [5], [6] for an information about representability of complex numbers by the special complex systems. Topological properties of real number representations were studied in more general situations, in [2], [9], [11].

The purpose of this work is the investigation of similarities between the uniqueness of the representations by the system (D, b) and topological properties of F, W and G.

To avoid ambiguities we recall the following definition.

Definition 1.1. Let f be an element of the set F. The element f has a unique representation in the form (1.1) iff for any two series $\sum_{j=-\infty}^{-1} k_j^{(1)} b^j$

and
$$\sum_{j=-\infty}^{-1} k_j^{(2)} b^j$$
, where all $k_j^{(1)}$ and $k_j^{(2)}$ belong to D:

$$\left(f = \sum_{j=-\infty}^{-1} k_j^{(1)} b^j = \sum_{j=-\infty}^{-1} k_j^{(2)} b^j\right) \Longrightarrow (k_j^{(1)} = k_j^{(2)})$$

for each negative integer j.

Let $F_1 = F_1(D, b)$ denote the set of numbers that can be uniquely expressed as (1.1) and let $F_2 = F \setminus F_1$ be the corresponding complementary subset of F. Similarly, we introduce sets W_1 , G_1 , W_2 and G_2 : $w \in W_1$ iff w has a unique representation (1.2); $g \in G_1$ iff g has a unique representation (1.3); $W_2 = W \setminus W_1$ and $G_2 = G \setminus G_1$.

2. Statements of results

It should be noted that some numbers have a single representation in the one form but the same numbers may fail to have the single representation in another form. The first three propositions illuminate this phenomen. **Proposition 2.1.** Let (D,b) be a number system. Then the following three properties are equivalent:

$$F_2 \neq \emptyset;$$
 (2.1)

$$G_2 \neq \emptyset;$$
 (2.2)

$$(F - F) \cap ((D - D) \setminus \{0\}) \neq \emptyset, \tag{2.3}$$

where $F - F = \{x - y : x \in F, y \in F\}$ and

$$(D-D)\setminus\{0\} = \{x-y : x \in D, y \in D, x \neq y\}.$$

Proposition 2.2. Let (D,b) be a number system. Then the following two properties are equivalent:

$$F_1 \cap G_2 \neq \emptyset; \tag{2.4}$$

$$(F_1 - F) \cap (D \setminus \{0\}) \neq \emptyset, \tag{2.5}$$

where $F_1 - F = \{x - y : x \in F_1, y \in F\}$ and

$$D \setminus \{0\} = \{x : x \in D, \ x \neq 0\}.$$

Example 2.1 Let (D, b) be the usual binary system: $D = \{0, 1\}, b = 2$. Then we have $0 \in F$, $1 \in F_1 \cap G_2$ and 1 = 1 - 0.

Let $B_{2F} = B_{2F}(D)$ and $B_{2W} = B_{2W}(D)$ be the subsets of $\{z \in \mathbb{C} : |z| > 1\}$ defined by the next relations:

$$(b \in B_{2F}) \iff (F_2(D, b) \neq \emptyset),$$
 (2.6)

$$(b \in B_{2W}) \iff (W_2(D, b) \neq \emptyset).$$
 (2.7)

Proposition 2.3. Let D be a finite set of complex numbers, card $D \ge 2$, $0 \in D$. Then:

2.3.1. B_{2W} is at most countable and nonempty; **2.3.2.** $B_{2F} \supseteq [-2, -1) \cup (1, 2].$

Example 2.2 Let b = 3 and $D = \{0, 2\}$. Then F is the Cantor ternary set C. In this case, it is known that $F_2 = \emptyset$. Consequently, by Proposition 2.1, $G_2 = \emptyset$ and from $W_2 \subseteq G_2$ follows $W_2 = \emptyset$.

If (D, b) is a number system, then the convex hull of F will be denoted by \hat{F} . The set of all extreme points of \hat{F} will be denoted by Ext \hat{F} . The following theorem shows that there is no number system with $F_1 = \emptyset$. **Theorem 2.1.** Let (D, b) be a number system. Then Ext \hat{F} is subset of F_1 . In symbols,

$$\operatorname{Ext} F \subseteq F_1. \tag{2.8}$$

Corollary 2.1. Let (D, b) be a complex (real) number system. Then F_1 is a nonempty G_{δ} subset of \mathbb{C} (of \mathbb{R}) and F_2 is F_{σ} subset of \mathbb{C} (of \mathbb{R}).

Example 2.3 Let (D, b) be the standard decimal system: $D = \{0, 1, \ldots, 9\}$ and b = 10. Then we have that: F = [0, 1], $Ext F = \{0, 1\}, 0 \in F_1 \cap G_1$ and $1 \in F_1 \cap G_2$.

Remark 2.1. The set of all extreme points of an arbitrary closed convex plane set is closed [1, Exercise 11.9.8]. Since F is compact, $\text{Ext } \hat{F}$ is a compact subset of F.

Theorem 2.2. Let (D,b) be a number system. If $0 \in G_1$, then W is closed and discrete in \mathbb{C} .

Theorem 2.3. Let D be a finite set of complex numbers, card $D \ge 2$, $0 \in D$. Suppose $b \in \{z : |z| > 1\} \setminus B_{2W}$. If W is closed and discrete in \mathbb{C} , then $0 \in G_1(D, b)$.

Remark 2.2. By Proposition 2.3 the set B_{2W} is at most countable and hence Theorem 2.12 is an "almost converse" of Theorem 2.2.

Example 2.4 Let b = 10 and $D = \{1, 1, -9\}$. Then $b \in B_{2W}$, zero is not in $G_1(D, b)$, but W is closed and discrete.

Theorem 2.4. Let (D, b) be a number system. Then the following three statements are equivalent:

2.4.1. *F* is homeomorphic to the Cantor ternary set C; **2.4.2.** The small inductive dimension of *G* is zero. In symbols, ind G = 0; **2.4.3.** ind $\overline{F}_2 < 0$.

Corollary 2.2. Let (D, b) be a real number system. Then F is homeomorphic to C iff F_2 is a nowhere dense subset of \mathbb{R} .

Remark 2.3. By the definition of small inductive dimension we have $\operatorname{idn}\overline{F}_2 = -1$ iff $\overline{F}_2 = \emptyset$.

The following two propositions define more precisely some aspects of Theorem 2.4 and Corollary 2.2.

Proposition 2.4. Let (D,b) be a number system. If card D = 2 and $b \in (1, +\infty)$, then F is homeomorphic to C iff F_2 is empty.

Proposition 2.5. If $n \in \mathbb{N}$, $b \in \mathbb{C}$ and $|b| > n \ge 3$, then there exists a finite set $D \subseteq \mathbb{C}$ such that card D = n, $0 \in D$, F(D, b) is homeomorphic to C and $F_2(D, b) \neq \emptyset$.

Our final theorem gives some survey of topological properties of number representation by systems with $F_2 = \emptyset$.

Theorem 2.5. Let (D, b) be a number system. If $F_2(D, b) = \emptyset$, then:

2.5.1. *F* is compact, perfect, zero-dimensional, that is homeomorphic to the Cantor set C;

2.5.2. W is a closed, discrete and unbounded subset of \mathbb{C} ;

2.5.3. *G* is closed, perfect and zero-dimensional subset of \mathbb{C} .

Remark 2.4. For an arbitrary (D, b), we have the following: F is compact and perfect; W is unbounded; and if W is a closed subset of \mathbb{C} , then G is closed, too.

Vector generalizations. Many our propositions and theorems remain valid when one passes from a number system to the following manydimensional construction: D is a finite set in \mathbb{R}^n , including zero, and Bis $n \times n$ nonsingular matrix with a norm ||B|| > 1. It should also be observed that Theorem 2.1 remains valid for a positional vector system whose definition similar to Definition 2.1 from the Petkovšek's work [9].

3. Proofs

3.1. Proof of Proposition 2.1

The trivial inclusion

$$F_2 \subseteq F \cap G_2 \tag{3.1.1}$$

shows that the implication $(2.1) \Rightarrow (2.2)$ is correct. Let x be an element of the set G_2 . By the definition of G_2 there are two sequences $\{a_j\}$ and $\{a'_j\}$ for which

$$x = \sum_{j=-\infty}^{M} a_j b^j = \sum_{j=-\infty}^{M} a'_j b^j$$
 (3.1.2)

holds with $\sum_{j=-\infty}^{M} |a_j - a'_j| \neq 0$. Let j_0 be the greatest subscript with $|a_{j_0} - a'_{j_0}| \neq 0$. Then using (3.1.2) we obtain

$$a_{j_0} + \sum_{j=-\infty}^{j_0-1} a_j b^{j-j_0} = a'_{j_0} + \sum_{j=-\infty}^{j_0-1} a'_j b^{j-j_0}, \qquad (3.1.3)$$

where $a_{j_0} \neq a'_{j_0}$. The last equality is equivalent to (2.3). So we have only to establish implication (2.3) \Rightarrow (2.1). Suppose that (3.1.3) holds with $a_{j_0} \neq a'_{j_0}$. Then taking the number t as

$$t = \sum_{j=-\infty}^{j_0} a_j b^{j-j_0-1} = \sum_{j=-\infty}^{j_0} a'_j b^{j-j_0-1},$$

we have that $t \in F_2$. Hence we get $F_2 \neq \emptyset$.

3.2. Proof of Proposition 2.2

Suppose d is an element of $(F_1 - F) \cap (D \setminus \{0\})$. Then $d \in D$, $d \neq 0$ and $d = t_1 - t$, with $t_1 \in F_1$ and $t \in F$. Hence $t_1 = d + t \in F_1 \cap G_2$, and we have $(2.5) \Rightarrow (2.4)$. Now suppose f is an element of $G_2 \cap F_1$. Since $f \in F_1$ we have a unique representation

$$f = \sum_{j=-\infty}^{-1} a_j b^j,$$
 (3.2.1)

where each $a_j \in D$. Let $\mathcal{F} = \mathcal{F}(f)$ be the family of all representations of f which are different from (3.2.1). Since $f \in G_2$, we have that $\mathcal{F} \neq \emptyset$. Let (s) be an element of \mathcal{F}

$$(s) = \left(f = \sum_{j = -\infty}^{M_s} a_j^{(s)} b^j\right), \qquad (3.2.2)$$

and let $j_0 = j_0(s)$ be the greatest subscript for which $a_{j_0}^{(s)} \neq 0$. Since $f \in F_1$, we have $j_0(s) \ge 0$. Now to prove the implication (2.4) \Rightarrow (2.5), it suffices to justify the equality

min
$$\{j_0(s): (s) \in \mathcal{F}(f), f \in F_1 \cap G_2\} = 0.$$
 (3.2.3)

Consider any number $f_0 \in F_1 \cap G_2$ with a representation $(s) \in \mathcal{F}(f_0)$ such that

$$(s) = \left(f_0 = \sum_{j=-\infty}^M a_j b^j\right) \quad a_M \neq 0,$$
$$M = \min \{j_0(s) : (s) \in \mathcal{F}(f), \quad f \in F_1 \cap G_2\}.$$

In order to check that (3.2.3) holds it is sufficient to show that

$$(M > 0) \Rightarrow (b^{-1}f_0 \in G_2 \cap F_1).$$

It is clear that $f_0 \in G_2$ implies $b^{-1}f_0 \in G_2$. Suppose $f_0 \in G_2 \cap F_1$, M > 0 and $b^{-1}f_0 \in F_2$. By the last supposition we can find two different representations

$$\sum_{j=-\infty}^{-1} a_j^{(1)} b^j = \sum_{j=-\infty}^{-1} a_j^{(2)} b^j = b^{-1} f_0.$$
(3.2.4)

If $|a_{-1}^{(1)}| + |a_{-1}^{(2)}| = 0$ holds, then it follows from (3.2.4) that

$$f_0 = \sum_{j=-\infty}^{-2} a_j^{(1)} b^{j+1} = \sum_{j=-\infty}^{-2} a_j^{(2)} b^{j+1}$$

This contradicts to $f_0 \in F_1$. Consequently, $|a_{-1}^{(1)}| + |a_{-1}^{(2)}| \neq 0$, and we have

$$f_0 = a_{-1}^{(1)} + \sum_{j=-\infty}^{-2} a_j^{(1)} b^{j+1} = a_{-1}^{(2)} + \sum_{j=-\infty}^{-2} a_j^{(2)} b^{j+1},$$

contrary to the assumption M > 0.

3.3. Proof of Proposition 2.3

Lemma 3.1. Let D be a finite set of complex numbers with card $D \ge 2$ and $0 \in D$. Then a complex number b belongs to B_{2W} iff |b| > 1 and there is a polynomial $p(z) = \sum_{i=0}^{n} a_i z^i$ such that $p(b) = 0, n \ge 1, a_n \ne 0$ and $a_i \in (D-D)$ for i = 0, 1, ..., n.

Lemma 3.2. The polynomial $p(z) = z^3 - z + 1$ has a real root z_0 with $|z_0| > 1$.

Lemma 3.3. Let $D_1 \subseteq D$ be two finite sets of complex numbers, and let $0 \in D_1$, card $D_1 \ge 2$. Then

$$F_2(D_1, b) \subseteq F_2(D, b),$$

for each b with |b| > 1.

Lemma 3.4. Let (D,b) be a number system and let z be a nonzero complex number. Then

$$F_i(zD,b) = zF_i(D,b).$$

for i = 1, 2.

The simple proofs of these lemmas are omitted.

Lemma 3.5. Let b be a real number with |b| > 1 and let $D = \{0, 1\}$, then $F_2(D, b)$ is nonempty if and only if

$$b \in [-2, -1) \cup (1, 2].$$

Proof. It follows from Proposition 2.1 that $F_2(D, b)$ is nonempty iff there exists a sequence $\{a_j\}_{-\infty}^{-1}$ whose elements belong to the set $\{-1, 0, 1\}$ and

$$1 = \sum_{j=-\infty}^{-1} a_j b^j.$$
 (3.3.1)

Hence in the case $D = \{0, 1\}$ we have the equivalence

$$(F_2(D,b) = \emptyset) \equiv (F_2(D,-b) = \emptyset).$$
(3.3.2)

Consequently, we shall restrict ourselve, to the case b > 1. If b > 2, then $\sum_{j=-\infty}^{-1} |a_j b^j| < 1$ and equality (3.3.1) cannot holds. It therefore remains to verify that 1 is a distance between two points of F(D, b) for $b \in (1, 2]$. It follows directly from the early Randolph's result [10]

Theorem 3.1 (Randolph). Let $\{a_n\}^{\infty}$ be a sequence with $a_n > 0$, $a_1 \ge a_2 \ge \ldots$, and $\sum_{n=1}^{\infty} a_n = 1$. For a fixed $\{a_n\}_{n=1}^{\infty}$, let S be the set of all sums of the form $\sum \varepsilon_n a_n$ where ε_n is equal 1 or 0. Then the set S - S fills the unit interval [0, 1] iff

$$a_n \le \sum_{k=n+1}^{\infty} a_k.$$

We can now easily prove Proposition 2.3.

Lemma 3.1 implies that B_{2W} is at most countable, and from Lemmas 3.1 and 3.2 it follows that B_{2W} is nonempty. By Lemmas 3.5 and 3.4 we have $B_{2F} \supseteq [-2, -1) \cup (1, 2]$ for each two-point set D, and using Lemma 3.3 we have (2.3.2) for the case card D > 2.

3.4. Proof of Theorem 2.1

Let z_0 be an extreme point of \hat{F} . Since $\operatorname{Ext} \hat{F} \subseteq \partial \hat{F}$, there is a straight line l_0 which contains z_0 , and one of its closed half-plane includes \hat{F} [8, Theorem 3.2]. This is a so-called straight line of support of a convex set \hat{F} .

For the sake of simplicity, suppose l_0 and real axis are mutually perpendicular,

$$l_0 = \{ z \in \mathbb{C} : \operatorname{Re} z = \operatorname{Re} z_0 \}.$$

This we can always do by choosing the suitable $\Theta \in [0, 2\pi)$ and passing on to the set $e^{i\Theta}D = \{e^{i\Theta}d_1, \ldots, e^{i\Theta}d_k\}$ from the "old" set $D = \{d_1, \ldots, d_k\}$. Passing to $e^{i\Theta}D$ we obtain $e^{i\Theta}F$, $e^{i\Theta}F_1$, $e^{i\Theta}\hat{F}$ and $e^{i\Theta}\text{Ext}\hat{F}$ from F, F_1 , \hat{F} and $\text{Ext}\hat{F}$. We can assume, without loss of generality, that

$$\operatorname{Re} z \le \operatorname{Re} z_0 \tag{3.4.1}$$

for all $z \in \hat{F}$.

Consider first the case where

$$l_0 \cap \hat{F} = \{z_0\}. \tag{3.4.2}$$

For any negative integer j, define D_j by the rule:

$$(a \in D_j) \iff (a \in D \text{ and } \operatorname{Re}(ab^j) = \max_{d \in D} \operatorname{Re}(db^j)).$$
 (3.4.3)

Since D is finite and nonempty, we have $D_j \neq \emptyset$ for each negative integer j. Let t_0 be the number with a representation

$$t_0 = \sum_{j=-\infty}^{-1} a_j b^j$$

where $a_j \in D_j$ for $j = -1, -2, \ldots$.

We claim that $t_0 = z_0$. It is obvious that t_0 is an element of F. From the definition of extreme point we have $\operatorname{Ext} \hat{F} \subseteq F$ [8, Theorem 4.2]. Hence $z_0 \in F$ and, by (3.4.3) Re $z_0 \leq \operatorname{Re} t_0$. The reverse inequality follows from (3.4.1). Consequently, Re $z_0 = \operatorname{Re} t_0$. From the last equality and (3.4.2) we have $t_0 = z_0$.

The equality $z_0 = t_0$ implies that D_j has the unique element for each negative integer j. Really, given any negative integer j_0 , we fix elements $a_{j_0}^{(1)}$ and $a_{j_0}^{(2)}$ of the set D_{j_0} , then for any sequence $\{a_j\}$ such that $a_j \in D_j$ we have

$$a_{j_0}^{(1)}b^{j_0} + \sum_{\substack{j=-\infty\\j\neq j_0}}^{-1} a_j b^j = z_0 = a_{j_0}^{(2)}b^{j_0} + \sum_{\substack{j=-\infty\\j\neq j_0}}^{-1} a_j b^j$$

Hence $a_{j_0}^{(1)} = a_{j_0}^{(2)}$ and D_{j_0} is an one-point set.

We can now easily show that $z_0 \in F_1$. If there are two representations

$$z_0 = \sum_{j=-\infty}^{-1} c_j b^j, \ c_j \in D$$

and

$$z_0 = \sum_{j=-\infty}^{-1} a_j b^j, \ a_j \in D_j.$$

then by (3.4.3) the inequality

$$\operatorname{Re}(c_j b^j) \le \operatorname{Re}(a_j b^j) \tag{3.4.4}$$

holds for each negative integer j but

$$\sum_{j=-\infty}^{-1} \operatorname{Re}(c_j b^j) = \sum_{j=-\infty}^{-1} \operatorname{Re}(a_j b^j).$$
(3.4.5)

The relations (3.4.4) and (3.4.5) imply the equality

$$\operatorname{Re}(c_j b^j) = \operatorname{Re}(a_j b^j)$$

for each negative integer j. Since D_j is an one-point set, we have $c_j = a_j$ for all j.

Consider now the case where

$$\exists z_1 \in l_0 \cap \hat{F} : z_1 \neq z_0.$$

We can restrict ourselves to the situation of the inequality $\text{Im } z_1 < \text{Im } z_0$. From the last inequality it follows that

$$\forall \ z \in F \cap l_0 : \operatorname{Im} \ z \le \operatorname{Im} \ z_0. \tag{3.4.6}$$

(In the opposite case, z_0 is an interior point of the interval $[z_1, z_2]$ where z_2 is some point of \hat{F} . This contradicts to the inclusion $z_0 \in \text{Ext } \hat{F}$.)

For any negative integer j, define D_j^o by the rule:

$$(a \in D_j^o) \iff (a \in D_j \text{ and } \operatorname{Im}(ab^j) = \max_{d \in D_j} \operatorname{Im}(db^j))$$
 (3.4.7)

where D_j was defined by (3.4.3). We claim that D_j^o is an one-point set. Let j be a negative integer, and let a_1, a_2 be elements of D_j^o . Then we have:

$$\operatorname{Re}(a_1b^j) = \operatorname{Re}(a_2b^j) = \max_{d \in D} \operatorname{Re}(db^j),$$
$$\operatorname{Im}(a_2b^j) = \operatorname{Im}(a_2b^j) = \max_{d \in D_j} \operatorname{Im}(db^j).$$

Hence $a_2b^j = a_1b^j$ holds. Since $b \neq 0$, it follows that $a_1 = a_2$.

Let us denote by a_j the unique element of D_j^o . Consider an arbitrary representation of z_0 ,

$$z_0 = \sum_{j=-\infty}^{-1} c_j b^j,$$

where $c_j \in D$ for each j. Now to prove that $z_0 \in F_1$ it suffices to demonstrate the equality $c_j = a_j$ for each negative integer j.

Set $t_0 := \sum_{j=-\infty}^{-1} a_j b^j$ where $a_j \in D_j^o$. As it has been proved above, (3.4.1) and (3.4.3) imply Re $z_0 = \text{Re } t_0$, and hence $t_0 \in \hat{F} \cap l_0$. It follows

(3.4.1) and (3.4.3) imply Re $z_0 = \text{Re } t_0$, and hence $t_0 \in F + t_0$. It follows from the equality Re $z_0 = \text{Re } t_0$ that

$$c_j \in D_j \tag{3.4.9}$$

for each negative integer j. The relation $t_0 \in \hat{F} \cap l_0$ and (3.4.6) imply the inequality

(3.4.10)
$$\sum_{j=-\infty}^{-1} \operatorname{Im}(a_j b^j) \le \sum_{j=-\infty}^{-1} \operatorname{Im}(c_j b^j).$$

By formulal (3.4.7) and (3.4.9) we have

$$\operatorname{Im}(c_j b^j) \le \operatorname{Im}(a_j b^j), \quad j = -1, -2, \dots$$

From this and (3.4.10) it follows that $\operatorname{Im}(c_j b^j) = \operatorname{Im}(a_j b^j)$, and hence $c_j \in D_j^o$ for each negative integer j. Since $D_j^o = \{a_j\}$, the equality $a_j = c_j$ hold for all negative integer j.

3.5. Proof of Corollary 2.1

We may assume without loss of generality that (D, b) is a complex number system. Since a convex hull of a compact subset of \mathbb{R}^n is compact [8, Theorem 2.6] and F is a compact subset of \mathbb{C} [4, Proposition 2.2.23], it follows that \hat{F} is compact, and by the Krein-Milman theorem we have that Ext $\hat{F} \neq \emptyset$ [8, Corollary of Theorem 4.2]. The last inequality and (2.8) imply that $F_1 \neq \emptyset$.

We turn to the proof that F_2 is a F_{σ} . Let us denote by D^{ω} the product of a countable collection of copies of the discrete space $D = \{d_1, \ldots, d_k\}$. As usual, we assume that D^{ω} has a product (Tychonoff) topology. The classic Tychonoff theorem implies that D^{ω} is a compact space. All elements of D^{ω} can be regarded as sequences $\{a_j\}_{j=-\infty}^{-1}$ with $a_j \in D$ for each negative integer j. Define a map $\Phi : D^{\omega} \to F$ by the rule: if $a = \{a_j\}_{j=-\infty}^{-1} \in D^{\omega}$, then

$$\Phi(a) = \sum_{j=-\infty}^{-1} a_j b^j.$$
 (3.5.1)

It is easy to see that Φ is continuous and onto.

Let j_0 be a negative integer and let $d \in D$. Then we set

$$\Pi_d^{j_0} := \{ a \in D^{\omega} : a = (a_{-1}, a_{-2}, \ldots), \ a_{j_0} = d \}.$$

All Π_d^j are closed subsets of the compact D^{ω} , and hence all Π_d^j are compact.

From the definition 1.1 it follows that

$$F_2 = \bigcup_{j=-\infty}^{-1} \bigcup_{i=1}^{k-1} \bigcup_{l=i+1}^{k} (\Phi(\Pi_{d_i}^j) \cap \Phi(\Pi_{d_l}^j))$$
(3.5.2)

where d_i and d_l are elements of the set $D = \{d_1, \ldots, d_k\}$. Since a continuous image of a compact set is compact, $\Phi(\Pi_d^j)$ is closed for each Π_d^j . Hence, by formula (3.5.2) F_2 is a F_{σ} .

The definition of F_1 implies that

$$F_1 = (\mathbb{C} \backslash F_2) \cap F. \tag{3.5.3}$$

Since for a metric spaces each closed set is G_{δ} , it follows that F is G_{δ} . The complement of an F_{σ} is G_{δ} , hence $\mathbb{C}\setminus F_2$ is G_{δ} . Therefore, by (3.5.3) F_1 is G_{δ} .

3.6. Proof of Theorem 2.2

Suppose there is either a point $t_0 \in \overline{W} \setminus W$ or a point $t_0 \in W'$ where \overline{W} is the closure of W and W' is the set of all accumulation points of W. In the both cases, we can find a sequence $\{z_n\}, n \in \mathbb{N}$, such that:

$$\lim_{n \to \infty} z_n = t_0; \ \forall n \in \mathbb{N} : z_n \in W;$$

$$\forall n, m \in \mathbb{N} : (n \neq m) \Rightarrow (z_n \neq z_m).$$
(3.6.1)

For each z_n there exists a representation

$$z_n = \sum_{j=0}^{Q_n} a_j^{(n)} b^j$$

where $a_j^{(n)} \in D$ and $Q_n \ge 0$. Using conditions (3.6.1), we can find a subsequence $\{z_{n_k}\}, z_{n_k} = a_{Q_{n_k}}^{(n_k)} b^{Q_{n_k}} + \ldots + a_0^{(n_k)} b^0$, of the sequence $\{z_n\}$ for which

$$\forall n_k \in \mathbb{N} : a_{Q_{n_k}}^{(n_k)} \neq 0 \text{ and } Q_{n_{k+1}} > Q_{n_k}.$$
 (3.6.2)

We may assume without loss of generality that $\{z_{n_k}\}$ and $\{z_n\}$ coincide. Conditions (3.6.1) and (3.6.2) imply that

$$\lim_{n \to \infty} (a_{Q_n}^{(n)} + a_{Q_{n-1}}^{(n)} b^{-1} + \ldots + a_0^{(n)} b^{-Q_n}) = \lim_{n \to \infty} \frac{t_0}{b^{Q_n}} = 0.$$
(3.6.3)

Since *D* is finite and for each $n \in \mathbb{N} : 0 \neq a_{Q_n}^{(n)} \in D$, there exists a constant infinite subsequence $\{a_{Q_n_k}^{(n_k)}\}$ of $\{a_{Q_n}^{(n)}\}$ such that

$$a_{Q_{n_k}}^{(n_k)} = d (3.6.4)$$

with $d \in D$, $d \neq 0$. Now we can, once again, take $n_k = n$. Put

$$\Delta_n := a_{Q_n-1}^{(n)} b^{-1} + \ldots + a_0^{(n)} b^{-Q_n}.$$

The equalities (3.6.3) and (3.6.4) show that

$$\lim_{n \to \infty} \Delta_n = -d.$$

Since $\Delta_n \in F$ and F is compact, we have $-d \in F$. From the definition of F it follows that the nonzero number -d has a representation

$$-d = \sum_{j=-\infty}^{-1} a_j b^j.$$

Hence

$$0 = d - d = d + \sum_{j = -\infty}^{-1} a_j b^j,$$

that is $0 \in G_2$.

3.7. Proof of Theorem 2.3

Suppose 0 is not in $G_1(D, b)$ but W is closed and discrete in \mathbb{C} . It suffices to show that these assumptions imply $b \in B_{2W}(D)$. By the supposition $0 \in G_2(D, b)$, and hence we can find a representation

$$0 = \sum_{j=-\infty}^{Q} a_j b^j \tag{3.7.1}$$

with $\sum_{j=-\infty}^{Q} |a_j| \neq 0$ and $a_j \in D$ for each j. If there is some k < Q such that $a_j = 0$ for all j < k, then

$$0 = \sum_{j=-\infty}^{Q} a_j b^{j-k} = \sum_{j=0}^{Q-k} a_{j+k} b^j.$$

It follows, in this case, that $b \in B_{2W}(D)$ (see Lemma 3.1). Hence we can restrict ourselves to the case when

$$\forall j < Q \exists k < j : |a_k| \neq 0.$$

Let n be a positive integer. If $n \ge Q$, then by (3.7.1)

$$0 = b^n \sum_{j=-\infty}^Q a_j b^j = w_n + f_n$$

where

$$w_n := \sum_{j=-n}^{Q} a_j b^{j+n}$$
 and $f_n := \sum_{j=-\infty}^{-n-1} a_j b^{j+n}$.

Since $f_n \in F$ for each n and F is compact, there is a convergent subsequence $\{f_{n_i}\}$ of the sequence $\{f_n\}$. The equality $w_n + f_n = 0$ implies that $\{w_{n_i}\}$ is convergent, too. Let w be the limit of $\{w_{n_i}\}$. By the assumptions W is discrete and closed. Consequently, for some i_0 , we have

$$w = w_{n_{i_0}} = w_{n_{i_0+1}} = w_{n_{i_0+2}} = \dots$$

This implies that $w \in W_2$. Thus $b \in B_{2W}(D)$.

3.8. Proof of Theorem 2.4

Lemma 3.6. Let (D, b) be a number system. Then the set F is a compact perfect set.

Proof. It is known that F is compact. It remains to show that every $f \in F$ is an accumulation point of F. By the definition of F we have

$$f = \sum_{j=-\infty}^{-1} a_j b^j$$

with $a_j \in D$. Fix two different elements d_1 and d_2 of the set D. Let i be a negative integer. Setting

$$a_{j}^{(i)} := \begin{cases} a_{j} & \text{if } j \neq i, \\ d_{1} & \text{if } j = i \text{ and } a_{j} \neq d_{1}, \\ d_{2} & \text{if } j = i \text{ and } a_{j} = d_{1} \end{cases}$$

and

$$f_i := \sum_{j=-\infty}^{-1} a_j^{(i)} b^j,$$

we obtain the sequence $\{f_i\}_{i=-\infty}^{-1}$ such that

$$\lim_{i \to -\infty} f_i = f,$$

and $f_i \in F$, $f_i \neq f$, for each *i*.

Lemma 3.7. Let (D,b) be a number system. If $F_2 \neq \emptyset$, then F_2 is a dense subset of the set F.

Proof. Let f_0 be an element of F_2 . It is easy verified that $b^j f_0 \in F_2$ for each negative integer j. Let f be an element of F. By the definition of F we have

$$f = \sum_{j=-\infty}^{-1} a_j(f) b^j$$

where $a_i(f) \in D$. For each negative integer k, define f_k by the formula:

$$f_k := b^{k-1} f_0 + \sum_{j=k}^{-1} a_j(f) b^j.$$

Then $f_k \in F_2$ for each k and

$$\lim_{k \to -\infty} f_k = f.$$

Now the proof of Theorem 2.4 follows from the properties of zerodimensional sets and Lemmas 3.6, 3.7, see below.

 $(2.4.1) \Rightarrow (2.4.2)$ If F is homeomorphic to the Cantor set C, then F is closed and zero-dimensional. An union of a countable family of zero-dimensional closed sets in a separable metric space is zero-dimensional [4, Corollary 3.2.9]. Since W is countable and

$$G = \bigcup_{w \in W} (w + F),$$

the set G is zero-dimensional.

 $(2.4.2) \Rightarrow (2.4.3)$ Suppose that ind G = 0. Since $\overline{F}_2 \subseteq F \subseteq G$, we have ind $\overline{F}_2 \leq \text{ind } G = 0$ [4, Theorem 3.1.7].

 $(2.4.3) \Rightarrow (2.4.1)$ Consider first the case where ind $\overline{F}_2 = 0$. In this case, F_2 is a nonvoid set and by Lemma 3.7 we have $F = \overline{F}_2$. Using Lemma 3.6, we have that F is a compact, perfect zero-dimensional subset of the complex plane \mathbb{C} . Hence F is homeomorphic to the Cantor ternary

set [12, Theorem 29.7 and Corollary 30.4]. Now, suppose that $\operatorname{ind} \overline{F}_2 = -1$. By the definition of the small inductive dimension we have $F_2 = \emptyset$, i. e., each element of the set F has a unique representation (1.1). Under this condition the map $\Phi : D^{\omega} \to F$ (see formula 3.5.1) is one-to-one, continuous and onto. Hence Φ is a homeomorphism [12, Theorem 17.14]. Since every two totally disconnected, perfect, compact metrizable spaces are homeomrphic, it follows that the Cantor set C is homeorphic to D^{ω} . [12, Theorem 30.3 and Corollary 30.4]. Consequently, C is homeomorphic to F.

3.9. Proof Corollary 2.2

Let us denote by Int \overline{F}_2 the set of all interior points of the set \overline{F}_2 . We must show that Int $\overline{F}_2 = \emptyset$ iff ind $\overline{F}_2 \leq 0$. This follows directly from the well-known

Theorem 3.2. [7, Theorem IV.3] Let \mathbb{R}^n be the Eucliden *n*-dimensional space, and let $A \subseteq \mathbb{R}^n$. Then ind A = n iff Int $A \neq \emptyset$.

3.10. Proof of Proposition 2.4

We may assume without loss of generality that $D = \{0, 1\}$, (see Lemma 3.4).

Lemma 3.8. [10] If $b_1 \ge b_2 \ge b_3 \ge \ldots$, $b_n \ldots > 0$, $\sum_{n=1}^{\infty} b_n = s < \infty$ and $b_n \le \sum_{i=n+1}^{\infty} b_i$, then corresponding to any number $z, 0 \le z \le s$, there exists a sequence $\{\varepsilon_n\}$ each element of which is either 0 or 1, such that

$$z = \sum_{n=1}^{\infty} \varepsilon_n b_n$$

Suppose b is a point in the interval (1, 2]. Then from Randolph's Lemma 3.8 it follows that $[0, 1] \subseteq F$, and so F cannot be homeomorphic to the Cantor set C. Observe also that by Lemma 3.5 we have $F_2 \neq \emptyset$ for $b \in (1, 2]$. If $b \in (2, \infty)$, then by Lemma 3.5 $F_2 = \emptyset$ and Theorem 2.4 shows that F is homeomorphic to C.

3.11. Proof of Proposition 2.5

For an arbitrary number system (D, b) with $D = \{d_1, \ldots, d_k\}$ we construct the corresponding iterated function system $\{f_1, \ldots, f_k\}$ where

$$f_j: \mathbb{C} \to \mathbb{C}, \quad f_j(z) = b^{-1}z + d_j, \quad j = 1, \dots, k \quad d_j \in D.$$

It is easy to see that F = F(D, b) is the invariant set for this iterated system, that is

$$F = \bigcup_{j=1}^{k} f_j(F),$$

and similarity dimension of F is

$$s(F) = \lg(k) / \lg(b)$$

(see, for example, [4, Chapter 4]). Since ind $F \leq s(F)$ [4, Theorem 6.2.10 and Theorem 6.3.8], it follows from Theorem 2.4 that if card D < |b|, then F is homeomorphic to the Cantor set C.

Hence, if $n \in \mathbb{N}$, $n \geq 3$, $b \in \mathbb{C}$, |b| > n, $\{0, 1, b^{-1}\} \subseteq D \subseteq \mathbb{C}$, card D = n, then F(D, b) is homeomorphic to C and by Proposition 2.1 $F_2(D, b) \neq \emptyset$.

3.12. Proof of Theorem 2.5

Suppose W is closed. It is enough to show that G is closed.

Let g be an accumulation point of G. Then there is a sequence $\{g_n\}_{n=1}^{\infty}$ such that $g = \lim_{n \to \infty} g_n$ and $g_n \in G$ for each n. By the definition of G we have $g_n = f_n + w_n$ where $f_n \in F$ and $w_n \in W$. Since F is compact, there is a convergent subsequence $\{f_{n_k}\}$ of the sequence $\{f_n\}$. Set

$$f := \lim_{k \to \infty} f_{n_k}.$$

Then we have

$$g - f = \lim_{k \to \infty} w_{n_k},$$

and since W is closed, it follows that $g - f \in W$. Hence

$$g = (g - f) + f \in W + F = G.$$

References

- [1] Marcel Berger, Géométrie. Cedic, Paris, 1977; Nathan, Paris 1977.
- [2] F. S. Cater, Real numbers with redundant representations // Real Anal. Exchange, 17 (1991–92), 282–290.
- [3] Chandler Davis and Donald J. Knuth, Number representations and dragon curves // Part I: J. Recreational Math., 3 (1970), 66–81; Part II: J. Recreational Math., 3 (1970), 133–149.
- [4] Gerald A. Edgar, Measure, Topology and Fractal Geometry. Springer-Verlag, New York — Berlin — Heidelberg, 1992.
- [5] W. J. Gilbert, Fractal geometry derived from complex bases // Math. Intelligencer. 4 (1982), 78–86.

- [6] W. J. Gilbert, The fractal dimension of sets derived from complex bases // Canad. Math. Bull. 29 (1986), 495–500.
- [7] Witold Hurewicz and Henry Wallman, *Dimension Theory*. Princeton University Press, Princeton, 1948.
- [8] K. Leichtweiss, Konvexe Menger. VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.
- [9] M. Petkovšek, Ambiquous number are dense // Amer. Math. Monthly, 97 1990, 408–411.
- [10] J. F. Randolph, Some properties of sets of the Cantor type // J.London Math. Soc. 16 (1941), 38–42.
- [11] M. Starbird and T. Starbird, Required redundancy in the representation of reals // Proc. Amer. Math. Soc. 114 (1992), 796–774.
- [12] Stephen Willard, General Topology. Addison Wesley Publishing Company, Reading, Massachusetts-Menlo Park, California — London — Don Mills, Ontario — Sydney, 1970.

CONTACT INFORMATION

O. Dovgoshey and V. Ryazanov	Institute of Applied Mathematics and Mechanics, NAS of Ukraine, 74 Roze Luxemburg str., Donetsk, 83114 Ukraine <i>E-Mail:</i> dovgoshey@iamm.ac.donetsk.ua, ryaz@iamm.ac.donetsk.ua
O. Martio and V. Vuorinen	Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland <i>E-Mail:</i> martio@cc.helsinki.fi, vuorinen@csc.fi