Uniqueness and topological properties of number representation

 ${}^{\rm V}{\mathcal M}^{\rm T}$

O. Dovgoshey, O. Martio, V. Ryazanov, M. Vuorinen

Abstract. Let b be a complex number with $|b| > 1$ and let D be a finite subset of the complex plane $\mathbb C$ such that $0 \in D$ and card $D \geq 2$. A number z is representable by the system (D, b) if $z = \sum_{n=1}^{M}$ $\sum_{j=-\infty} a_j b^j$, where $a_j \in D$. We denote by F the set of numbers which are representable by (D, b) with $M = -1$. The set W consists of numbers that are (D, b) representable with $a_j = 0$ for all negative j. Let F_1 be a set of numbers in F that can be uniquely represented by (D, b) . It is shown that: The set of all extreme points of F is a subset of F_1 . If $0 \in F_1$, then W is discrete and closed. If $b \in \{z : |z| > 1\} \backslash D'$, where D' is a finite or countable set associated with D and W is discrete and closed, then $0 \in F_1$. For a real number system (D, b) , F is homeomorphic to the Cantor set C iff $F\backslash F_1$ is nowhere dense subset of R.

2000 MSC. 11A67.

Key words and phrases. Representations of numbers, Cantor sets.

1. Introduction

Suppose we have a finite set D of complex numbers, $0 \in D$, card $D \geq 2$ and a number $b \in \mathbb{C}$, $|b| > 1$. We denote by F the set of "fractions" for the system (D, b) and by W the corresponding set of integers:

$$
f \in F \iff f = \sum_{j=-\infty}^{-1} a_j b^j,\tag{1.1}
$$

$$
w \in W \iff w = \sum_{j=0}^{M} k_j b^j,
$$
\n(1.2)

Received 11.02.2004

The first and third authors thank for the support Department of Mathematics of University of Helsinki

ISSN 1810 – 3200. © Інститут прикладної математики і механіки НАН України

where a_i and k_j belong to D.

A "general" number q is representable by the system (D, b) iff

$$
q = \sum_{j=-\infty}^{M} a_j b^j, \quad a_j \in D,
$$
\n(1.3)

i.e., $g = w + f$, $w \in W$, $f \in F$. We shall write G for the set of all representable numbers, by definitions (1.1) , (1.2) and (1.3)

 $G = F + W$.

The definitions of F and W and various examples of real and complex number systems can be found in [4]. See also [3], [5], [6] for an information about representability of complex numbers by the special complex systems. Topological properties of real number representations were studied in more general situations, in [2], [9], [11].

The purpose of this work is the investigation of similarities between the uniqueness of the representations by the system (D, b) and topological properties of F , W and G .

To avoid ambiguities we recall the following definition.

Definition 1.1. Let f be an element of the set F . The element f has a unique representation in the form (1.1) iff for any two series $\sum_{n=1}^{\infty}$ j=−∞ $k_i^{(1)}$ $j^{(1)}b^j$

and
$$
\sum_{j=-\infty}^{-1} k_j^{(2)} b^j
$$
, where all $k_j^{(1)}$ and $k_j^{(2)}$ belong to D:
\n
$$
\left(f = \sum_{j=-\infty}^{-1} k_j^{(1)} b^j = \sum_{j=-\infty}^{-1} k_j^{(2)} b^j\right) \Longrightarrow (k_j^{(1)} = k_j^{(2)})
$$

for each negative integer j.

Let $F_1 = F_1(D, b)$ denote the set of numbers that can be uniquely expressed as (1.1) and let $F_2 = F \backslash F_1$ be the corresponding complementary subset of F. Similarly, we introduce sets W_1, G_1, W_2 and G_2 : $w \in W_1$ iff w has a unique representation (1.2); $g \in G_1$ iff g has a unique representation (1.3); $W_2 = W \backslash W_1$ and $G_2 = G \backslash G_1$.

2. Statements of results

It should be noted that some numbers have a single representation in the one form but the same numbers may fail to have the single representation in another form. The first three propositions illuminate this phenomen.

Proposition 2.1. Let (D, b) be a number system. Then the following three properties are equivalent:

$$
F_2 \neq \emptyset; \tag{2.1}
$$

$$
G_2 \neq \emptyset; \tag{2.2}
$$

$$
(F - F) \cap ((D - D) \setminus \{0\}) \neq \emptyset, \tag{2.3}
$$

where $F - F = \{x - y : x \in F, y \in F\}$ and

$$
(D - D)\{0\} = \{x - y : x \in D, y \in D, x \neq y\}.
$$

Proposition 2.2. Let (D, b) be a number system. Then the following two properties are equivalent:

$$
F_1 \cap G_2 \neq \emptyset; \tag{2.4}
$$

$$
(F_1 - F) \cap (D \setminus \{0\}) \neq \emptyset, \tag{2.5}
$$

where $F_1 - F = \{x - y : x \in F_1, y \in F\}$ and

$$
D\backslash\{0\} = \{x : x \in D, x \neq 0\}.
$$

Example 2.1 Let (D, b) be the usual binary system: $D = \{0, 1\}, b = 2$. Then we have $0 \in F$, $1 \in F_1 \cap G_2$ and $1 = 1 - 0$.

Let $B_{2F} = B_{2F}(D)$ and $B_{2W} = B_{2W}(D)$ be the subsets of $\{z \in \mathbb{C} :$ $|z| > 1$ defined by the next relations:

$$
(b \in B_{2F}) \iff (F_2(D, b) \neq \emptyset), \tag{2.6}
$$

$$
(b \in B_{2W}) \iff (W_2(D, b) \neq \emptyset). \tag{2.7}
$$

Proposition 2.3. Let D be a finite set of complex numbers, card $D \geq 2$, $0 \in D$. Then:

2.3.1. B_{2W} is at most countable and nonempty; 2.3.2. B_{2F} ⊇ [−2, −1) ∪ (1, 2].

Example 2.2 Let $b = 3$ and $D = \{0, 2\}$. Then F is the Cantor ternary set C. In this case, it is known that $F_2 = \emptyset$. Consequently, by Proposition 2.1, $G_2 = \emptyset$ and from $W_2 \subseteq G_2$ follows $W_2 = \emptyset$.

If (D, b) is a number system, then the convex hull of F will be denoted by \hat{F} . The set of all extreme points of \hat{F} will be denoted by Ext \hat{F} . The following theorem shows that there is no number system with $F_1 = \emptyset$.

Theorem 2.1. Let (D, b) be a number system. Then Ext \hat{F} is subset of F_1 . In symbols,

$$
\operatorname{Ext}\hat{F}\subseteq F_1.\tag{2.8}
$$

Corollary 2.1. Let (D, b) be a complex (real) number system. Then F_1 is a nonempty G_{δ} subset of $\mathbb C$ (of $\mathbb R$) and F_2 is F_{σ} subset of $\mathbb C$ (of $\mathbb R$).

Example 2.3 Let (D, b) be the standard decimal system: $D = \{0, 1, \ldots, 9\}$ and $b = 10$. Then we have that: $F = [0, 1]$, $Ext F = \{0, 1\}$, $0 \in F_1 \cap G_1$ and $1 \in F_1 \cap G_2$.

Remark 2.1. The set of all extreme points of an arbitrary closed convex plane set is closed [1, Exercise 11.9.8]. Since F is compact, Ext \hat{F} is a compact subset of F.

Theorem 2.2. Let (D, b) be a number system. If $0 \in G_1$, then W is closed and discrete in C.

Theorem 2.3. Let D be a finite set of complex numbers, card $D \geq 2$, $0 \in D$. Suppose $b \in \{z : |z| > 1\} \backslash B_{2W}$. If W is closed and discrete in \mathbb{C} , then $0 \in G_1(D, b)$.

Remark 2.2. By Proposition 2.3 the set B_{2W} is at most countable and hence Theorem 2.12 is an "almost converse" of Theorem 2.2.

Example 2.4 Let $b = 10$ and $D = \{1, 1, -9\}$. Then $b \in B_{2W}$, zero is not in $G_1(D, b)$, but W is closed and discrete.

Theorem 2.4. Let (D, b) be a number system. Then the following three statements are equivalent:

2.4.1. F is homeomorphic to the Cantor ternary set C ; **2.4.2.** The small inductive dimension of G is zero. In symbols, ind $G=0$; **2.4.3.** ind $\overline{F}_2 \le 0$.

Corollary 2.2. Let (D, b) be a real number system. Then F is homeomorphic to C iff F_2 is a nowhere dense subset of $\mathbb R$.

Remark 2.3. By the definition of small inductive dimension we have $\mathrm{idn}\overline{F}_2 = -1$ iff $\overline{F}_2 = \emptyset$.

The following two propositions define more precisely some aspects of Theorem 2.4 and Corollary 2.2.

Proposition 2.4. Let (D, b) be a number system. If card $D = 2$ and $b \in (1, +\infty)$, then F is homeomorphic to C iff F_2 is empty.

Proposition 2.5. If $n \in \mathbb{N}$, $b \in \mathbb{C}$ and $|b| > n \geq 3$, then there exists a finite set $D \subseteq \mathbb{C}$ such that card $D = n$, $0 \in D$, $F(D, b)$ is homeomorphic to C and $F_2(D, b) \neq \emptyset$.

Our final theorem gives some survey of topological properties of number representation by systems with $F_2 = \emptyset$.

Theorem 2.5. Let (D, b) be a number system. If $F_2(D, b) = \emptyset$, then:

2.5.1. F is compact, perfect, zero-dimensional, that is homeomorphic to the Cantor set C;

2.5.2. W is a closed, discrete and unbounded subset of \mathbb{C} ;

2.5.3. G is closed, perfect and zero-dimensional subset of \mathbb{C} .

Remark 2.4. For an arbitrary (D, b) , we have the following: F is compact and perfect; W is unbounded; and if W is a closed subset of \mathbb{C} , then G is closed, too.

Vector generalizations. Many our propositions and theorems remain valid when one passes from a number system to the following manydimensional construction: D is a finite set in \mathbb{R}^n , including zero, and B is $n \times n$ nonsingular matrix with a norm $||B|| > 1$. It should also be observed that Theorem 2.1 remains valid for a positional vector system whose definition similar to Definition 2.1 from the Petkovšek's work [9].

3. Proofs

3.1. Proof of Proposition 2.1

The trivial inclusion

$$
F_2 \subseteq F \cap G_2 \tag{3.1.1}
$$

shows that the implication $(2.1) \Rightarrow (2.2)$ is correct. Let x be an element of the set G_2 . By the definition of G_2 there are two sequences $\{a_i\}$ and $\{a'_j\}$ for which

$$
x = \sum_{j=-\infty}^{M} a_j b^j = \sum_{j=-\infty}^{M} a'_j b^j
$$
 (3.1.2)

holds with $\sum_{ }^{ M }$ $\sum_{j=-\infty}^{\infty} |a_j - a'_j| \neq 0$. Let j_0 be the greatest subscript with $|a_{j_0} - a'_{j_0}| \neq 0$. Then using (3.1.2) we obtain

$$
a_{j_0} + \sum_{j=-\infty}^{j_0-1} a_j b^{j-j_0} = a'_{j_0} + \sum_{j=-\infty}^{j_0-1} a'_j b^{j-j_0}, \qquad (3.1.3)
$$

where $a_{j_0} \neq a'_{j_0}$. The last equality is equivalent to (2.3). So we have only to establish implication $(2.3) \Rightarrow (2.1)$. Suppose that $(3.1.3)$ holds with $a_{j_0} \neq a'_{j_0}$. Then taking the number t as

$$
t = \sum_{j=-\infty}^{j_0} a_j b^{j-j_0-1} = \sum_{j=-\infty}^{j_0} a'_j b^{j-j_0-1},
$$

we have that $t \in F_2$. Hence we get $F_2 \neq \emptyset$.

3.2. Proof of Proposition 2.2

Suppose d is an element of $(F_1 - F) \cap (D \setminus \{0\})$. Then $d \in D$, $d \neq 0$ and $d = t_1 - t$, with $t_1 \in F_1$ and $t \in F$. Hence $t_1 = d + t \in F_1 \cap G_2$, and we have $(2.5) \Rightarrow (2.4)$. Now suppose f is an element of $G_2 \cap F_1$. Since $f \in F_1$ we have a unique representation

$$
f = \sum_{j=-\infty}^{-1} a_j b^j,
$$
 (3.2.1)

where each $a_j \in D$. Let $\mathcal{F} = \mathcal{F}(f)$ be the family of all representations of f which are different from (3.2.1). Since $f \in G_2$, we have that $\mathcal{F} \neq \emptyset$. Let (s) be an element of $\mathcal F$

$$
(s) = \left(f = \sum_{j=-\infty}^{M_s} a_j^{(s)} b^j \right),
$$
 (3.2.2)

and let $j_0 = j_0(s)$ be the greatest subscript for which $a_{j_0}^{(s)}$ $j_0^{(s)} \neq 0$. Since $f \in F_1$, we have $j_0(s) \geq 0$. Now to prove the implication $(2.4) \Rightarrow (2.5)$, it suffices to justify the equality

$$
\min \{j_0(s) : (s) \in \mathcal{F}(f), \ f \in F_1 \cap G_2\} = 0. \tag{3.2.3}
$$

Consider any number $f_0 \in F_1 \cap G_2$ with a representation $(s) \in \mathcal{F}(f_0)$ such that $\overline{1}$

$$
(s) = \left(f_0 = \sum_{j=-\infty}^{M} a_j b^j\right) \quad a_M \neq 0,
$$

$$
M = \min \{j_0(s) : (s) \in \mathcal{F}(f), \ f \in F_1 \cap G_2\}.
$$

In order to check that (3.2.3) holds it is sufficient to show that

$$
(M > 0) \Rightarrow (b^{-1} f_0 \in G_2 \cap F_1).
$$

It is clear that $f_0 \in G_2$ implies $b^{-1}f_0 \in G_2$. Suppose $f_0 \in G_2 \cap F_1$, $M > 0$ and $b^{-1}f_0 \in F_2$. By the last supposition we can find two different representations

$$
\sum_{j=-\infty}^{-1} a_j^{(1)} b^j = \sum_{j=-\infty}^{-1} a_j^{(2)} b^j = b^{-1} f_0.
$$
 (3.2.4)

If $|a_{-1}^{(1)}\>$ $\binom{1}{-1}$ + $\binom{2}{-1}$ $\vert \frac{1}{2} \vert = 0$ holds, then it follows from (3.2.4) that

$$
f_0 = \sum_{j=-\infty}^{-2} a_j^{(1)} b^{j+1} = \sum_{j=-\infty}^{-2} a_j^{(2)} b^{j+1}.
$$

This contradicts to $f_0 \in F_1$. Consequently, $|a_{-1}^{(1)}|$ $\binom{1}{-1}$ + $\binom{2}{-1}$ $\begin{bmatrix} 2/2 \\ -1 \end{bmatrix} \neq 0$, and we have

$$
f_0 = a_{-1}^{(1)} + \sum_{j=-\infty}^{-2} a_j^{(1)} b^{j+1} = a_{-1}^{(2)} + \sum_{j=-\infty}^{-2} a_j^{(2)} b^{j+1},
$$

contrary to the assumption $M > 0$.

3.3. Proof of Proposition 2.3

Lemma 3.1. Let D be a finite set of complex numbers with card $D \geq 2$ and $0 \in D$. Then a complex number b belongs to B_{2W} iff $|b| > 1$ and there is a polynomial $p(z) = \sum_{n=1}^{\infty}$ $i=0$ $a_i z^i$ such that $p(b) = 0, n \ge 1, a_n \ne 0$ and $a_i \in (D - D)$ for $i = 0, 1, ..., n$.

Lemma 3.2. The polynomial $p(z) = z^3 - z + 1$ has a real root z_0 with $|z_0| > 1$.

Lemma 3.3. Let $D_1 \subseteq D$ be two finite sets of complex numbers, and let $0 \in D_1$, card $D_1 \geq 2$. Then

$$
F_2(D_1,b)\subseteq F_2(D,b),
$$

for each b with $|b| > 1$.

Lemma 3.4. Let (D, b) be a number system and let z be a nonzero complex number. Then

$$
F_i(zD, b) = zF_i(D, b).
$$

for $i = 1, 2$.

The simple proofs of these lemmas are omitted.

Lemma 3.5. Let b be a real number with $|b| > 1$ and let $D = \{0, 1\}$, then $F_2(D, b)$ is nonempty if and only if

$$
b \in [-2, -1) \cup (1, 2].
$$

Proof. It follows from Proposition 2.1 that $F_2(D, b)$ is nonempty iff there exists a sequence ${a_j}_{-\infty}^{-1}$ whose elements belong to the set ${-1,0,1}$ and

$$
1 = \sum_{j=-\infty}^{-1} a_j b^j.
$$
 (3.3.1)

Hence in the case $D = \{0, 1\}$ we have the equivalence

$$
(F_2(D, b) = \emptyset) \equiv (F_2(D, -b) = \emptyset). \tag{3.3.2}
$$

Consequently, we shall restrict ourselve, to the case $b > 1$. If $b > 2$, then $\frac{-1}{\sum}$ $\sum_{j=-\infty} |a_j b^j| < 1$ and equality (3.3.1) cannot holds. It therefore remains to verify that 1 is a distance between two points of $F(D, b)$ for $b \in (1, 2]$. It follows directly from the early Randolph's result [10]

Theorem 3.1 (Randolph). Let $\{a_n\}^\infty$ be a sequence with $a_n > 0$, $a_1 \ge a_2 \ge \ldots$, and $\sum_{n=1}^{\infty} a_n = 1$. For a fixed $\{a_n\}_{n=1}^{\infty}$, let S be the set of all sums of the form $\sum \varepsilon_n a_n$ where ε_n is equal 1 or 0. Then the set $S-S$ fills the unit interval [0, 1] iff

$$
a_n \le \sum_{k=n+1}^{\infty} a_k.
$$

We can now easily prove Proposition 2.3.

Lemma 3.1 implies that B_{2W} is at most countable, and from Lemmas 3.1 and 3.2 it follows that B_{2W} is nonempty. By Lemmas 3.5 and 3.4 we have $B_{2F} \supseteq [-2, -1) \cup (1, 2]$ for each two-point set D, and using Lemma 3.3 we have $(2.3.2)$ for the case card $D > 2$. 3.3 we have $(2.3.2)$ for the case card $D > 2$.

3.4. Proof of Theorem 2.1

Let z_0 be an extreme point of \hat{F} . Since Ext $\hat{F} \subseteq \partial \hat{F}$, there is a straight line l_0 which contains z_0 , and one of its closed half-plane includes \ddot{F} [8, Theorem 3.2]. This is a so-called straight line of support of a convex set \ddot{F} .

For the sake of simplicity, suppose l_0 and real axis are mutually perpendicular,

$$
l_0 = \{ z \in \mathbb{C} : \text{Re } z = \text{Re } z_0 \}.
$$

This we can always do by choosing the suitable $\Theta \in [0, 2\pi)$ and passing on to the set $e^{i\Theta}D = \{e^{i\Theta}d_1, \ldots, e^{i\Theta}d_k\}$ from the "old" set $D =$ $\{d_1,\ldots,d_k\}$. Passing to $e^{i\Theta}D$ we obtain $e^{i\Theta}F$, $e^{i\Theta}F_1$, $e^{i\Theta}\hat{F}$ and $e^{i\Theta}Ext\hat{F}$ from F, F_1 , \hat{F} and Ext \hat{F} . We can assume, without loss of generality, that

$$
Re z \le Re z_0 \tag{3.4.1}
$$

for all $z \in \hat{F}$.

Consider first the case where

$$
l_0 \cap \hat{F} = \{z_0\}.
$$
\n(3.4.2)

For any negative integer j, define D_j by the rule:

$$
(a \in D_j) \iff (a \in D \text{ and } \text{Re}(ab^j) = \max_{d \in D} \text{Re}(db^j)). \tag{3.4.3}
$$

Since D is finite and nonempty, we have $D_j \neq \emptyset$ for each negative integer j. Let t_0 be the number with a representation

$$
t_0 = \sum_{j=-\infty}^{-1} a_j b^j,
$$

where $a_j \in D_j$ for $j = -1, -2, \ldots$.

We claim that $t_0 = z_0$. It is obvious that t_0 is an element of F. From the definition of extreme point we have Ext $\tilde{F} \subseteq F$ [8, Theorem 4.2]. Hence $z_0 \in F$ and, by (3.4.3) Re $z_0 \leq$ Re t_0 . The reverse inequality follows from (3.4.1). Consequently, Re $z_0 = \text{Re } t_0$. From the last equality and $(3.4.2)$ we have $t_0 = z_0$.

The equality $z_0 = t_0$ implies that D_j has the unique element for each negative integer j . Really, given any negative integer j_0 , we fix elements $a_{i_0}^{(1)}$ $_{j_0}^{(1)}$ and $a_{j_0}^{(2)}$ $j_0^{(2)}$ of the set D_{j_0} , then for any sequence $\{a_j\}$ such that $a_j \in D_j$ we have

$$
a_{j_0}^{(1)}b^{j_0} + \sum_{\substack{j=-\infty\\j\neq j_0}}^{-1}a_jb^j = z_0 = a_{j_0}^{(2)}b^{j_0} + \sum_{\substack{j=-\infty\\j\neq j_0}}^{-1}a_jb^j.
$$

Hence $a_{i_0}^{(1)}$ $j_0^{(1)} = a_{j_0}^{(2)}$ $j_0^{(2)}$ and D_{j_0} is an one-point set.

We can now easily show that $z_0 \in F_1$. If there are two representations

$$
z_0 = \sum_{j=-\infty}^{-1} c_j b^j, \quad c_j \in D
$$

and

$$
z_0 = \sum_{j=-\infty}^{-1} a_j b^j, \ \ a_j \in D_j,
$$

then by (3.4.3) the inequality

$$
\operatorname{Re}(c_j b^j) \le \operatorname{Re}(a_j b^j) \tag{3.4.4}
$$

holds for each negative integer j but

$$
\sum_{j=-\infty}^{-1} \text{Re}(c_j b^j) = \sum_{j=-\infty}^{-1} \text{Re}(a_j b^j).
$$
 (3.4.5)

The relations (3.4.4) and (3.4.5) imply the equality

$$
\operatorname{Re}(c_jb^j)=\operatorname{Re}(a_jb^j)
$$

for each negative integer j. Since D_j is an one-point set, we have $c_j = a_j$ for all i .

Consider now the case where

$$
\exists z_1 \in l_0 \cap \hat{F} : z_1 \neq z_0.
$$

We can restrict ourselves to the situation of the inequality Im $z_1 <$ Im z_0 . From the last inequality it follows that

$$
\forall z \in \hat{F} \cap l_0 : \text{Im } z \leq \text{Im } z_0. \tag{3.4.6}
$$

(In the opposite case, z_0 is an interior point of the interval $[z_1, z_2]$ where z_2 is some point of \hat{F} . This contradicts to the inclusion $z_0 \in \text{Ext } \hat{F}$.

For any negative integer j, define D_j^o by the rule:

$$
(a \in D_j^o) \iff (a \in D_j \text{ and } \text{Im}(ab^j) = \max_{d \in D_j} \text{Im}(db^j)) \tag{3.4.7}
$$

where D_j was defined by (3.4.3). We claim that D_j^o is an one-point set. Let j be a negative integer, and let a_1, a_2 be elements of D_j^o . Then we have:

$$
Re(a_1b^j) = Re(a_2b^j) = \max_{d \in D} Re(db^j),
$$

\n
$$
Im(a_2b^j) = Im(a_2b^j) = \max_{d \in D_j} Im(db^j).
$$

Hence $a_2b^j = a_1b^j$ holds. Since $b \neq 0$, it follows that $a_1 = a_2$.

Let us denote by a_j the unique element of D_j^o . Consider an arbitrary representation of z_0 ,

$$
z_0 = \sum_{j=-\infty}^{-1} c_j b^j,
$$

where $c_j \in D$ for each j. Now to prove that $z_0 \in F_1$ it suffices to demonstrate the equality $c_j = a_j$ for each negative integer j.

Set $t_0 := \sum_{ }^{-1}$ j=−∞ $a_j b^j$ where $a_j \in D_j^o$. As it has been proved above,

(3.4.1) and (3.4.3) imply Re $z_0 = \text{Re } t_0$, and hence $t_0 \in \hat{F} \cap l_0$. It follows from the equality Re $z_0 = \text{Re } t_0$ that

$$
c_j \in D_j \tag{3.4.9}
$$

for each negative integer j. The relation $t_0 \in \hat{F} \cap l_0$ and (3.4.6) imply the inequality

(3.4.10)
$$
\sum_{j=-\infty}^{-1} \text{Im}(a_j b^j) \leq \sum_{j=-\infty}^{-1} \text{Im}(c_j b^j).
$$

By formulal $(3.4.7)$ and $(3.4.9)$ we have

Im
$$
(c_jb^j)
$$
 \leq Im (a_jb^j) , $j = -1, -2, ...$

From this and (3.4.10) it follows that $\text{Im}(c_j b^j) = \text{Im}(a_j b^j)$, and hence $c_j \in D_j^o$ for each negative integer j. Since $D_j^o = \{a_j\}$, the equality $a_j = c_j$ hold for all negative integer j.

3.5. Proof of Corollary 2.1

We may assume without loss of generality that (D, b) is a complex number system. Since a convex hull of a compact subset of \mathbb{R}^n is compact [8, Theorem 2.6] and F is a compact subset of \mathbb{C} [4, Proposition 2.2.23], it follows that F is compact, and by the Krein-Milman theorem we have that Ext $F \neq \emptyset$ [8, Corollary of Theorem 4.2]. The last inequality and (2.8) imply that $F_1 \neq \emptyset$.

We turn to the proof that F_2 is a F_{σ} . Let us denote by D^{ω} the product of a countable collection of copies of the discrete space $D =$ $\{d_1, \ldots, d_k\}$. As usual, we assume that D^{ω} has a product (Tychonoff) topology. The classic Tychonoff theorem implies that D^{ω} is a compact space. All elements of D^{ω} can be regarded as sequences $\{a_j\}_{j=-\infty}^{-1}$ with $a_j \in D$ for each negative integer j. Define a map $\Phi : D^{\omega} \to F$ by the rule: if $a = \{a_j\}_{j=-\infty}^{-1} \in D^{\omega}$, then

$$
\Phi(a) = \sum_{j=-\infty}^{-1} a_j b^j.
$$
 (3.5.1)

It is easy to see that Φ is continuous and onto.

Let j_0 be a negative integer and let $d \in D$. Then we set

$$
\Pi_d^{j_0} := \{ a \in D^{\omega} : a = (a_{-1}, a_{-2}, \ldots), \ a_{j_0} = d \}.
$$

All Π_a^j $\frac{d}{d}$ are closed subsets of the compact D^{ω} , and hence all Π_d^j d are compact.

From the definition 1.1 it follows that

$$
F_2 = \bigcup_{j=-\infty}^{-1} \bigcup_{i=1}^{k-1} \bigcup_{l=i+1}^{k} (\Phi(\Pi_{d_i}^j) \cap \Phi(\Pi_{d_l}^j))
$$
(3.5.2)

where d_i and d_l are elements of the set $D = \{d_1, \ldots, d_k\}$. Since a continuous image of a compact set is compact, $\Phi(\Pi_d^j)$ is closed for each Π_d^j $\frac{j}{d}$. Hence, by formula (3.5.2) F_2 is a F_{σ} .

The definition of F_1 implies that

$$
F_1 = (\mathbb{C}\backslash F_2) \cap F. \tag{3.5.3}
$$

Since for a metric spaces each closed set is G_{δ} , it follows that F is G_{δ} . The complement of an F_{σ} is G_{δ} , hence $\mathbb{C}\backslash F_2$ is G_{δ} . Therefore, by (3.5.3) F_1 is G_δ .

3.6. Proof of Theorem 2.2

Suppose there is either a point $t_0 \in \overline{W}\backslash W$ or a point $t_0 \in W'$ where \overline{W} is the closure of W and W' is the set of all accumulation points of W. In the both cases, we can find a sequence $\{z_n\}, n \in \mathbb{N}$, such that:

$$
\lim_{n \to \infty} z_n = t_0; \ \forall n \in \mathbb{N} : z_n \in W; \tag{3.6.1}
$$

$$
\forall n, m \in \mathbb{N} : (n \neq m) \Rightarrow (z_n \neq z_m).
$$

For each z_n there exists a representation

$$
z_n = \sum_{j=0}^{Q_n} a_j^{(n)} b^j
$$

where $a_j^{(n)} \in D$ and $Q_n \ge 0$. Using conditions (3.6.1), we can find a subsequence $\{z_{n_k}\}, z_{n_k} = a_{Q_{n_k}}^{(n_k)}$ ${}_{Q_{n_k}}^{(n_k)}b^{Q_{n_k}} + \ldots + a_0^{(n_k)}$ $\binom{n_k}{0}$, of the sequence $\{z_n\}$ for which

$$
\forall n_k \in \mathbb{N}: a_{Q_{n_k}}^{(n_k)} \neq 0 \text{ and } Q_{n_{k+1}} > Q_{n_k}.
$$
 (3.6.2)

We may assume without loss of generality that $\{z_{n_k}\}\$ and $\{z_n\}$ coincide. Conditions (3.6.1) and (3.6.2) imply that

$$
\lim_{n \to \infty} (a_{Q_n}^{(n)} + a_{Q_{n-1}}^{(n)} b^{-1} + \dots + a_0^{(n)} b^{-Q_n}) = \lim_{n \to \infty} \frac{t_0}{b^{Q_n}} = 0.
$$
 (3.6.3)

Since D is finite and for each $n \in \mathbb{N} : 0 \neq a_{Q_n}^{(n)}$ $Q_n^{(n)} \in D$, there exists a constant infinite subsequence $\{a_{Q_{n_k}}^{(n_k)}\}$ $\{a_{n_k}^{(n_k)}\}$ of $\{a_{Q_n}^{(n)}\}$ $\binom{n}{Q_n}$ such that

$$
a_{Q_{n_k}}^{(n_k)} = d \tag{3.6.4}
$$

with $d \in D$, $d \neq 0$. Now we can, once again, take $n_k = n$. Put

$$
\Delta_n := a_{Q_n-1}^{(n)} b^{-1} + \ldots + a_0^{(n)} b^{-Q_n}.
$$

The equalities (3.6.3) and (3.6.4) show that

$$
\lim_{n \to \infty} \Delta_n = -d.
$$

Since $\Delta_n \in F$ and F is compact, we have $-d \in F$. From the definition of F it follows that the nonzero number $-d$ has a representation

$$
-d = \sum_{j=-\infty}^{-1} a_j b^j.
$$

Hence

$$
0 = d - d = d + \sum_{j = -\infty}^{-1} a_j b^j,
$$

that is $0 \in G_2$.

3.7. Proof of Theorem 2.3

Suppose 0 is not in $G_1(D, b)$ but W is closed and discrete in $\mathbb C$. It suffices to show that these assumptions imply $b \in B_{2W}(D)$. By the supposition $0 \in G_2(D, b)$, and hence we can find a representation

$$
0 = \sum_{j=-\infty}^{Q} a_j b^j
$$
 (3.7.1)

with $\sum_{ }^{ Q }$ $\sum_{j=-\infty} |a_j| \neq 0$ and $a_j \in D$ for each j. If there is some $k < Q$ such that $a_j = 0$ for all $j < k$, then

$$
0 = \sum_{j=-\infty}^{Q} a_j b^{j-k} = \sum_{j=0}^{Q-k} a_{j+k} b^j.
$$

It follows, in this case, that $b \in B_{2W}(D)$ (see Lemma 3.1). Hence we can restrict ourselves to the case when

$$
\forall j < Q \; \exists k < j : |a_k| \neq 0.
$$

Let *n* be a positive integer. If $n \ge Q$, then by $(3.7.1)$

$$
0 = bn \sum_{j=-\infty}^{Q} a_j b^j = w_n + f_n
$$

where

$$
w_n := \sum_{j=-n}^{Q} a_j b^{j+n}
$$
 and $f_n := \sum_{j=-\infty}^{-n-1} a_j b^{j+n}$.

Since $f_n \in F$ for each n and F is compact, there is a convergent subsequence $\{f_{n_i}\}$ of the sequence $\{f_n\}$. The equality $w_n+f_n=0$ implies that $\{w_{n_i}\}\$ is convergent, too. Let w be the limit of $\{w_{n_i}\}\$. By the assumptions W is discrete and closed. Consequently, for some i_0 , we have

$$
w = w_{n_{i_0}} = w_{n_{i_0+1}} = w_{n_{i_0+2}} = \dots
$$

This implies that $w \in W_2$. Thus $b \in B_{2W}(D)$.

3.8. Proof of Theorem 2.4

Lemma 3.6. Let (D, b) be a number system. Then the set F is a compact perfect set.

Proof. It is known that F is compact. It remains to show that every $f \in F$ is an accumulation point of F. By the definition of F we have

$$
f = \sum_{j=-\infty}^{-1} a_j b^j
$$

with $a_j \in D$. Fix two different elements d_1 and d_2 of the set D. Let i be a negative integer. Setting

$$
a_j^{(i)} := \begin{cases} a_j & \text{if } j \neq i, \\ d_1 & \text{if } j = i \text{ and } a_j \neq d_1, \\ d_2 & \text{if } j = i \text{ and } a_j = d_1 \end{cases}
$$

and

$$
f_i := \sum_{j=-\infty}^{-1} a_j^{(i)} b^j,
$$

we obtain the sequence $\{f_i\}_{i=-\infty}^{-1}$ such that

$$
\lim_{i \to -\infty} f_i = f,
$$

and $f_i \in F$, $f_i \neq f$, for each i.

Lemma 3.7. Let (D, b) be a number system. If $F_2 \neq \emptyset$, then F_2 is a dense subset of the set F.

Proof. Let f_0 be an element of F_2 . It is easy verified that $b^j f_0 \in F_2$ for each negative integer j. Let f be an element of F . By the definition of F we have

$$
f = \sum_{j=-\infty}^{-1} a_j(f) b^j
$$

where $a_j(f) \in D$. For each negative integer k, define f_k by the formula:

$$
f_k := b^{k-1} f_0 + \sum_{j=k}^{-1} a_j(f) b^j.
$$

Then $f_k \in F_2$ for each k and

$$
\lim_{k \to -\infty} f_k = f.
$$

П

Now the proof of Theorem 2.4 follows from the properties of zerodimensional sets and Lemmas 3.6, 3.7, see below.

 $(2.4.1) \Rightarrow (2.4.2)$ If F is homeomorphic to the Cantor set C, then F is closed and zero-dimensional. An union of a countable family of zerodimensional closed sets in a separable metric space is zero-dimensional [4, Corollary 3.2.9]. Since W is countable and

$$
G = \bigcup_{w \in W} (w + F),
$$

the set G is zero-dimensional.

 $(2.4.2) \Rightarrow (2.4.3)$ Suppose that ind $G = 0$. Since $\overline{F}_2 \subseteq F \subseteq G$, we have ind $\overline{F}_2 \leq \text{ind } G = 0$ [4, Theorem 3.1.7].

 $(2.4.3) \Rightarrow (2.4.1)$ Consider first the case where ind $\overline{F}_2 = 0$. In this case, F_2 is a nonvoid set and by Lemma 3.7 we have $F = \overline{F}_2$. Using Lemma 3.6, we have that F is a compact, perfect zero-dimensional subset of the complex plane $\mathbb C$. Hence F is homeomorphic to the Cantor ternary

 \Box

set [12, Theorem 29.7 and Corollary 30.4]. Now, suppose that $\text{ind } \overline{F}_2 =$ −1. By the definition of the small inductive dimension we have $F_2 = \emptyset$, i. e., each element of the set F has a unique representation (1.1) . Under this condition the map $\Phi : D^{\omega} \to F$ (see formula 3.5.1) is one-to-one, continuous and onto. Hence Φ is a homeomorphism [12, Theorem 17.14]. Since every two totally disconnected, perfect, compact metrizable spaces are homeomrphic, it follows that the Cantor set C is homeorphic to D^{ω} . $[12,$ Theorem 30.3 and Corollary 30.4. Consequently, C is homeomorphic to F .

3.9. Proof Corollary 2.2

Let us denote by Int \overline{F}_2 the set of all interior points of the set \overline{F}_2 . We must show that Int $\overline{F}_2 = \emptyset$ iff ind $\overline{F}_2 \leq 0$. This follows directly from the well-known

Theorem 3.2. [7, Theorem IV.3] Let \mathbb{R}^n be the Eucliden n-dimensional space, and let $A \subseteq \mathbb{R}^n$. Then ind $A = n$ iff Int $A \neq \emptyset$.

3.10. Proof of Proposition 2.4

We may assume without loss of generality that $D = \{0, 1\}$, (see Lemma 3.4).

Lemma 3.8. [10] If $b_1 \ge b_2 \ge b_3 \ge \ldots, b_n \ldots > 0, \sum_{n=1}^{\infty}$ $\sum_{n=1} b_n = s < \infty$ and $b_n \leq \sum_{n=0}^{\infty}$ $\sum_{i=n+1} b_i$, then corresponding to any number $z, 0 \le z \le s$, there exists a sequence $\{\varepsilon_n\}$ each element of which is either 0 or 1, such that

$$
z = \sum_{n=1}^{\infty} \varepsilon_n b_n.
$$

Suppose b is a point in the interval $(1, 2]$. Then from Randolph's Lemma 3.8 it follows that $[0, 1] \subseteq F$, and so F cannot be homeomophic to the Cantor set C. Observe also that by Lemma 3.5 we have $F_2 \neq \emptyset$ for $b \in (1, 2]$. If $b \in (2, \infty)$, then by Lemma 3.5 $F_2 = \emptyset$ and Theorem 2.4 shows that F is homeomorphic to C .

3.11. Proof of Proposition 2.5

For an arbitrary number system (D, b) with $D = \{d_1, \ldots, d_k\}$ we construct the corresponding iterated function system $\{f_1, \ldots, f_k\}$ where

$$
f_j: \mathbb{C} \to \mathbb{C}, \ f_j(z) = b^{-1}z + d_j, \ j = 1, ..., k \ d_j \in D.
$$

It is easy to see that $F = F(D, b)$ is the invariant set for this iterated system, that is

$$
F = \bigcup_{j=1}^{k} f_j(F),
$$

and similarity dimension of F is

$$
s(F) = \lg(k)/\lg(b)
$$

(see, for example, [4, Chapter 4]). Since ind $F \leq s(F)$ [4, Theorem 6.2.10 and Theorem 6.3.8, it follows from Theorem 2.4 that if card $D < |b|$, then F is homeomorphic to the Cantor set C.

Hence, if $n \in \mathbb{N}$, $n \geq 3$, $b \in \mathbb{C}$, $|b| > n$, $\{0, 1, b^{-1}\} \subseteq D \subseteq \mathbb{C}$, card $D = n$, then $F(D, b)$ is homeomorphic to C and by Proposition 2.1 $F_2(D, b) \neq \emptyset$.

3.12. Proof of Theorem 2.5

Suppose W is closed. It is enough to show that G is closed.

Let g be an accumulation point of G . Then there is a sequence ${g_n}_{n=1}^{\infty}$ such that $g = \lim_{n \to \infty} g_n$ and $g_n \in G$ for each n. By the definition of G we have $g_n = f_n + w_n$ where $f_n \in F$ and $w_n \in W$. Since F is compact, there is a convergent subsequence $\{f_{n_k}\}\$ of the sequence $\{f_n\}$. Set

$$
f:=\lim_{k\to\infty}f_{n_k}.
$$

Then we have

$$
g - f = \lim_{k \to \infty} w_{n_k},
$$

and since W is closed, it follows that $q - f \in W$. Hence

$$
g = (g - f) + f \in W + F = G.
$$

References

- [1] Marcel Berger, *Géométrie.* Cedic, Paris, 1977; Nathan, Paris 1977.
- [2] F. S. Cater, Real numbers with redundant representations // Real Anal. Exchange, 17 (1991–92), 282–290.
- [3] Chandler Davis and Donald J. Knuth, Number representations and dragon curves // Part I: J. Recreational Math., 3 (1970), 66–81; Part II: J. Recreational Math., 3 (1970), 133–149.
- [4] Gerald A. Edgar, Measure, Topology and Fractal Geometry. Springer–Verlag, New York — Berlin — Heidelberg, 1992.
- [5] W. J. Gilbert, Fractal geometry derived from complex bases // Math. Intelligencer. 4 (1982), 78–86.
- [6] W. J. Gilbert, The fractal dimension of sets derived from complex bases // Canad. Math. Bull. 29 (1986), 495–500.
- [7] Witold Hurewicz and Henry Wallman, Dimension Theory. Princeton University Press, Princeton, 1948.
- [8] K. Leichtweiss, Konvexe Menger. VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.
- [9] M. Petkovšek, Ambiquous number are dense // Amer. Math. Monthly, 97 1990, 408–411.
- [10] J. F. Randolph, Some properties of sets of the Cantor type // J.London Math. Soc. 16 (1941), 38–42.
- [11] M. Starbird and T. Starbird, Required redundancy in the representation of reals // Proc. Amer. Math. Soc. 114 (1992), 796–774.
- [12] Stephen Willard, General Topology. Addison Wesley Publishing Company, Reading, Massachusetts–Menlo Park, California — London — Don Mills, Ontario — Sydney, 1970.

CONTACT INFORMATION

