Показати простий запис статті
dc.contributor.author |
Шевченко, Г.М. |
|
dc.contributor.author |
Мороз, А.Г. |
|
dc.date.accessioned |
2010-08-10T10:53:19Z |
|
dc.date.available |
2010-08-10T10:53:19Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
Задача оптимальної зупинки для процесів з незалежними приростами / Г.М. Шевченко, А.Г. Мороз // Український математичний вісник. — 2009. — Т. 6, № 1. — С. 126-134. — Бібліогр.: 5 назв. — укр. |
uk_UA |
dc.identifier.issn |
1810-3200 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/10959 |
|
dc.description.abstract |
У роботi розглядається задача оптимальної зупинки для процесiв iз незалежними приростами у випадках, коли функцiя виплат показникова g(x) = (1−e^−x)^+ або логарифмiчна g(x) = (ln x)^+. Для показникової функцiї виплат показано, що оптимальний момент зупинки є моментом першого перетину певного рiвня. Для логарифмiчної функцiї виплат доведено, що у класi моментiв перетину рiвня немає оптимального розв’язку. |
uk_UA |
dc.description.abstract |
We consider the optimal stopping problem for processes with independent increments with the exponential g(x) = (1−e^−x)^+ or logarithmic g(x) = (ln x)^+ payoff function. For the exponential payoff function, it is shown that the optimal stopping time is the first time of hitting a certain level. For the logarithmic payoff function, it is proved that a moment of the first hitting of a level cannot be optimal. |
uk_UA |
dc.language.iso |
uk |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.title |
Задача оптимальної зупинки для процесів з незалежними приростами |
uk_UA |
dc.title.alternative |
Optimal stopping problem for processes with independent increments |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті