Дослiджено властивостi iнварiантних множин динамiчних систем, що породженi внутрiшнiми вiдображеннями. Доведено, що якщо x — неблукаюча точка скiнченнократного внутрiшнього вiдображення, то не лише її додатна траєкторiя O+(x) складається з неблукаючих точок, але й вiд’ємна траєкторiя O−(x) мiстить як мiнiмум одну часткову пiвтраєкторiю, що складається з неблукаючих точок.
We have studied properties of invariant sets of dynamical systems generated by inner maps. We prove that if x is a nonwandering point of a finitely multiple inner map, then not only its positive trajectory O+(x) consists of nonwandering points, but also the negative trajectory O−(x) contains at least one partial halftrajectory consisting of nonwandering points.