The instantaneous state of a neural network consists of both the degree of excitation of each neuron and the positions of impulses in communication lines between the neurons. In neurophysiological experiments, the times of neuronal firing are recorded but not the state of communication lines. However, future spiking moments substantially depend on the past positions of impulses in the lines. This suggests that the sequence of intervals between firing moments (interspike intervals, ISI) in the network can be non-Markovian. In the present paper, we analyze this problem for the simplest possible neural “network,” namely, for a single neuron with delayed feedback.
Стан нейронної мережi складається як з величини збудження в кожному з нейронiв, так i зi значень положення iмпульсiв у лiнiях зв’язку. В нейрофiзiологiчних експериментах реєструються моменти пострiлiв окремих нейронiв, а не стани лiнiй зв’язку. Але моменти наступних пострiлiв iстотним чином залежать вiд положення iмпульсiв у лiнiях зв’язку в попереднi моменти. Це наводить на думку, що послiдовнiсть iнтервалiв мiж послiдовними пострiлами окремого нейрона в мережi (мiжспайковi iнтервали, МСI) може складати немарковський точковий стохастичний процес. У цiй роботi дослiджується така можливiсть для найпростiшої з можливих нейронної „мережi”, а саме, поодинокого нейрона з затриманим зворотним зв’язком.