Сильно связный граф сети представляется в виде конечномерного векторного пространства, порожденного его звеньями с определенными на нем базисами взаимно ортогональных подпространств независимых обобщенных узлов и независимых циклов. Используется аппарат линейной алгебры для обоснования методов получения матричных операторов линейных преобразований независимых обобщенных узлов, а также независимых циклов и определения их взаимозависимости.
The strongly coherent columns of a network is represented as a finite-dimensional vector space, caused by its parts with bases, determined on him, mutually orthogonal subspace of independent generalized units and independent cycles. For a substantiation linear transformations matrix operators of the independent generalized units and cycles and definition of their mutually dependence is used.
Сильно зв’язний граф мережі подається у вигляді кінцевовимірного векторного простору, породженого його ланками з визначеними на ньому базисами взаємно ортогональних підпросторів незалежних узагальнених вузлів та незалежних циклів. Використовується апарат лінійної алгебри для обґрунтування методів отримання матричних операторів лінійних перетворень незалежних узагальнених вузлів і незалежних циклів та визначення їх взаємозалежності.