In this article it is shown that each homeomorphic W1,1loc solution to the Beltrami equation ∂f = μ∂f is the so-called lower Q-homeomorphism with Q(z) = Kμ(z) where Kμ(z) is dilatation quotient of this equation. It is developed on this base the theory of the boundary behavior and the removability of singularities of such solutions.
В работе показано, что любое гомеоморфное W1,1loc решение уравнения Бельтрами ∂f = μ∂f является так называемым нижним <3-гомеоморфизмом с Q(z) = Kμ(z) где Kμ(z) - коэффициент дилатации этого уравнения. На этой основе развита теория граничного поведения и устранимость сингулярностей таких решений.
У роботі показано, що будь-який гомеоморфний W1,1loc розв'язок рівняння Бельтрамі ∂f = μ∂f є так званим нижнім (^-гомеоморфізмом зQ(z) = Kμ(z), де Kμ(z) - коефіцієнт дилатації цього рівняння. На цій основі розвинуто теорію граничної поведінки і усунення сингулярностей таких розв'язків.