Наукова електронна бібліотека
періодичних видань НАН України

О движении точки, стесненной плоской симметричной связью

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Плахтиенко, Н.П.
dc.date.accessioned 2015-10-25T18:41:46Z
dc.date.available 2015-10-25T18:41:46Z
dc.date.issued 2013
dc.identifier.citation О движении точки, стесненной плоской симметричной связью / Н.П. Плахтиенко // Прикладная механика. — 2013. — Т. 49, № 5. — С. 122-138. — Бібліогр.: 13 назв. — рос. uk_UA
dc.identifier.issn 0032-8243
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/87803
dc.description.abstract На однопараметричній множині замкнених плоских в'язей, що мають чотири осі симетрії, побудовано систему неперервних процесів з періодами T є √2,8}. Ці процеси виражають значення декартових координат рухомої точки як функцій пройденого шляху. Виявлено 2π періодичні процеси, що відрізняються від класичних тригонометричних знаком кривизни в кожній точці її існування. Обчислено асимптотичні 2³ періодичні процеси і застосовано в задачі про рух матеріальної точки по замкнутій плоско-ребристій поверхні. Вказано спосіб побудови неперервних еволюційних процесів гіперболічного типу, аргументами яких є довжини дуг розімкнених ліній з парою осей симетрії. Встановлено зв'язок диференціала дуги плоскої кривої з лагранжіаном простої динамічної системи ненатурального типу. Побудовано нелінійну динамічну систему другого порядку, частинними розв'язками якої можуть бути Т-періодичні або еволюційні процеси гіперболічного типу, що залежать від початкових значень. uk_UA
dc.description.abstract On the one-parametric set of closed plane constraints with four symmetry axes, the system of continuous processes with periods T є √2,8}. is constructed. They express the values of Cartesian coordinates of the moving point as the functions of passed distance. The 2π – periodic processes are revealed, which are differing from the classical trigonometrical process by the curvature sign in every point of its existence. The asymptotic 2³-periodic processes are evaluated and they are applied to the problem on motion of the material point over the closed plane-ribbed surface. A way is shown to construct the continuous evolution processes of hyperbolic type, which arguments are the lengths of arcs of open lines with a pair of symmetry axes. A link is established between the differential of plane curve with Lagrangian of the simple dynamical system of non-natural type. A nonlinear dynamical system of the second order is built, the partial solution of which can be T periodic or evolution processes of hyperbolic type, what depends on the initial values. uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут механіки ім. С.П. Тимошенка НАН України uk_UA
dc.relation.ispartof Прикладная механика
dc.title О движении точки, стесненной плоской симметричной связью uk_UA
dc.title.alternative On Motion of a Point, Tight by a Plane Symmetric Constraint uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис