Получено обобщенное уравнение типа Кадомцева-Петвиашвили, моделирующее распространение длинных нелинейных изгибно-гравитационных волн в море, покрытом сплошным льдом. Уравнение получено с учетом геометрически нелинейного прогиба тонкой пластины, которая моделирует сплошной лед, что не может не повлиять на область существования решений уравнения.
Отримано узагальнене рiвняння типу Кадомцева-Петвиашвiлi, яке моделює розповсюдження довгих нелiнiйних згинно-гравiтацiйних хвиль у морi, вкритому суцiльною кригою. Рiвняння отримано з урахуванням геометрично нелiнiйного прогину тонкої пластини, яка моделює суцiльну кригу, що не може не вплинути на область iснування розв'язкiв рiвняння.
The general Kadomtsev-Petviashvily-type equation describing propagation of long non-linear flexible-gravitational waves in the sea, covered with ice, has been developed. The equation has been constructed with the taking into account the geometrically-nonlinear flexion of the thin plate, which simulates the ice cover. It must influence the intervals where the equation solution exists.