Розглядається метод, в якому несиметричні граничні умови шляхом заміни змінних зводяться до симетричних та використовується спосіб апроксимації розв’язку нестаціонарної крайової задачі теплопровідності із симетричними граничними умовами інтерполяційним поліномом Лагранжа за трьома опорними точками просторової координати. Наближений розв’язок у двох із цих точок знаходиться як розв’язок системи диференціальних рівнянь, а третя точка вибирається на границі об’єкта і як значення використовується відповідна гранична умова. Застосовані прийоми дали змогу істотно спростити обчислювальний алгоритм за умови забезпечення прийнятної точності розв’язку.
The article deals with the method in which asymmetric boundary conditions are reduced to symmetric by replacing the variables. Approximation method of solution of non-stationary boundary heat conduction problem with symmetric boundary conditions by Lagrange polynomial interpolation in three spatial coordinates of the reference points is used. Approximate solution of two of these points is a solution of differential equations, and the third point on the boundary of the object is selected and corresponding boundary condition is used as the value. The applied methods have enabled to simplify computing algorithm provided that acceptable accuracy of solution.