Розглянуто один клас періодограмних оцінок невідомих параметрів нелінійної моделі регресії «сигнал плюс шум». Доведено їх строгу конзистентність за умови, що функція регресії – майже періодична, а шум є функціоналом від гауссівського випадкового процесу із сильною залежністю.
Рассматривается один класс периодограмных оценок неизвестных параметров нелинейной модели регрессии «сигнал плюс шум». Доказана их строгая состоятельность при условии, что функция регрессии – почти периодическая, а шум является функционалом от гауссовского случайного процесса с сильной зависимостью.
We proposed a class of periodogram estimates of unknown parameters of the nonlinear regression model «signal plus noise». We proved their strong consistency provided that the regression function is almost periodic and the noise is a functional of a random Gaussian process with long-range dependence.