Пiдгрупа H групи G називається спряжено-переставною, якщо HH^g = H^gH для кожного елемента g, що належить G. Доведено субнормальнiсть спряжено-переставних пiдгруп у деяких
класах нескiнченних груп, таких, наприклад, як чернiковськi або майже полiциклiчнi
групи. Доведено, що в iнших класах нескiнченних груп, таких, наприклад, як майже розв’язнi мiнiмакснi групи, кожна спряжено-переставна пiдгрупа є зростаючою. Також розглянуто структуру нескiнченних груп, кожна циклiчна пiдгрупа яких є спряжено-переставною.
Подгруппа H группы G называется сопряженно-перестановочной, если HH^g = H^gH для
каждого элемента g принадлежит G. Доказана субнормальность сопряженно-перестановочных подгрупп в некоторых классах бесконечных групп, таких, например, как черниковские или почти полициклические группы. Доказано, что в других классах бесконечных групп, таких, например, как почти разрешимые минимаксные группы, каждая сопряженно-перестановочная
подгруппа будет возрастающей. Также изучена структура бесконечных групп, каждая циклическая подгруппа которых является сопряженно-перестановочной.
A subgroup H of a group G is called conjugate-permutable in G if HH^g = H^gH for each element
g belongs G. We proved that a conjugate-permutable subgroups are subnormal in some classes of infinite
groups, in particular, in polycyclic-by-finite groups and in Chernikov groups. We find the classes of
infinite groups, in which every conjugate-permutable subgroup is always ascendant, and we consider
the structure of infinite groups, whose cyclic subgroups are conjugate-permutable.