На основании аппарата сингулярного разложения матриц и свойств соответствующих проекционных матриц получены новые оценки погрешности нормального псевдорешения в общем случае несовместных систем линейных алгебраических уравнений с возмущенными коэффициентами. Рассмотрены случаи уменьшения ранга возмущенной матрицы, его сохранения и увеличения.
На основі методу сингулярного розвинення матриць та властивостей відповідних проекційних матриць отримані нові оцінки похибки нормального псевдорозв'язку в загальному випадку несумісних систем лінійних алгебраїчних рівнянь зі збуреними коефіцієнтами. Досліджено випадки зменшення рангу збуреної матриці, його збереження, та збільшення.
On the basis of a method of singular decomposition of the matrices and the propeties of corresponding projection matrices, there are obtained the new error estimates of the normal pseudosolution in the general case of the non-consistent systems of linear algebraic equations with perturbed coefficients. The cases of decreasing rank of the perturbed matrix, its saving and increasing are discussed.