За допомогою спостережуваних величин та змінної стану динамічного процесу визначено загальне еволюційне рівняння, що узагальнює класичні звичайні диференціальні рівняння, диференціальні рівняння з частинними похідними та спадкові системи із запізненням і системи нейтрального типу. Наведено специфічні ілюстрації з використанням ліній трансмісії із зчепленням "найближчих сусідів" на межі та теорії теплопереносу у твердих тілах. Розглянуто також певну спектральну теорію для лінеаризації рівнянь.
Using observable quantities and state variable of a dynamical process, a general evolutionary equation is defined which unifies classical ordinary differential equations, partial differential equations, and hereditary systems of retarded and neutral type. Specific illustrations are given using transmission lines nearest neighbor coupled at the boundary and the theory of heat transfer in solids. Some spectral theory for linearization of the equations also is discussed.