Рассматривается проблема прогнозирования курсов акций компании «Бритиш Петролиум» и индекса Доу-Джонс Индастриал. Полученные результаты прогнозирования с использованием нечеткого МГУА сравнивались с результатами классического МГУА и каскадных нео-фаззи нейронных сетей. Для методов МГУА были использованы четыре класса частичных описаний: линейная, квадратичная, полиномы Фурье и Чебышева, варьировались виды функций принадлежности, размер обучающей выборки и свобода выбора. Приводятся экспериментальные результаты прогнозирования на Нью-Йоркской фондовой бирже NYSE, которые позволяют оценить эффективность различных методов прогнозирования и определить наиболее адекватный метод.
Розглядається проблема прогнозування курсу акцій компанії «Бритиш Петролиум» та індексу Доу- Джонс Індастріал. Отримані результати прогнозування з використанням нечіткого МГУА порівнювались з результатами класичного МГУА та каскадних нео-фаззі нейронних меореж. Для методів МГУА було використано чотири класа часткових описів: лінійна, квадратична, поліноми Фур’є та Чебишева, варіювались вигляд функцій приналежності, розмір навчальної вибірки та свобода вибору. Наведено експериментальні результати прогнозування на Нью- Йоркській фондовій біржі, які дозволяють оцінити ефективність різних методів прогнозування та визначити найбільш адекватний метод.
The problem of prediction of British Petroleum Corp. stock prices and the Dow Jones Industrial Average stock quote is considered. The obtained experimental results of prediction using FGMDH were compared with the classical GMDH and cascade neo-fuzzy neural networks. For the classical and fuzzy GMDH four classes of functions- linear, quadratic, Fourier polynomial and Chebyshev polynomial were used, and the variation in the form of membership function, the size of learning sample and freedom of choice with the developed software were performed. Experimental results of forecasting at NYSE are presented enabling to estimate efficiency of different forecasting methods and to choose the most adequate method.