Показати простий запис статті

dc.contributor.author Chernecky, V.
dc.date.accessioned 2009-12-07T15:33:34Z
dc.date.available 2009-12-07T15:33:34Z
dc.date.issued 2008
dc.identifier.citation Exact non-ruin probabilities in arithmetic case / V. Chernecky // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 3-4. — С. 39-52. — Бібліогр.: 6 назв.— англ. en_US
dc.identifier.issn 0321-3900
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/4567
dc.description.abstract Using the Wiener-Hopf method, for the model with arithmetic distributions of waiting times Ti and claims Zi in ordinary renewal process, an exact non-ruin probabilities for an insurance company in terms of the factorization of the symbol of the discrete Feller-Lundberg equation, are obtained. The delayed stationary process is introduced and generating function for delay is given. It is proved that the stationary renewal process in arithmetic case is ordinary if and only if, when the inter-arrival times have the shifted geometrical distribution. A formula for exact non-ruin probabilities in delayed stationary process is obtained. Illustrative examples when the distributions of Ti and Zi are shifted geometrical or negative binomial with positive integer power are considered. In these cases the symbol of the equation is rational functions what allows us to obtain the factorization in explicit form. en_US
dc.language.iso en en_US
dc.publisher Інститут математики НАН України en_US
dc.title Exact non-ruin probabilities in arithmetic case en_US
dc.type Article en_US
dc.status published earlier en_US


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис