Показати простий запис статті

dc.contributor.author Kolesnik, A.D.
dc.date.accessioned 2009-11-25T11:04:15Z
dc.date.available 2009-11-25T11:04:15Z
dc.date.issued 2008
dc.identifier.citation A limit theorem for symmetric Markovian random evolution in R^m / A.D. Kolesnik // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 69–75. — Бібліогр.: 15 назв.— англ. en_US
dc.identifier.issn 0321-3900
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/4537
dc.description.abstract We consider the symmetric Markovian random evolution X(t) performed by a particle that moves with constant finite speed c in the Euclidean space R^m, m >= 2. Its motion is subject to the control of a homogeneous Poisson process of rate λ > 0. We show that, under the Kac condition c → ∞, λ →∞, (c^2/λ) → ρ, ρ > 0, the transition density of X(t) converges to the transition density of the homogeneous Wiener process with zero drift and the diffusion coefficient σ^2 = 2ρ/m. en_US
dc.language.iso en en_US
dc.publisher Інститут математики НАН України en_US
dc.title A limit theorem for symmetric Markovian random evolution in R^m en_US
dc.type Article en_US
dc.status published earlier en_US
dc.identifier.udc 519.21


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис