Показати простий запис статті
dc.contributor.author |
Iksanov, A. |
|
dc.contributor.author |
Polotskiy, S. |
|
dc.date.accessioned |
2009-11-10T14:49:23Z |
|
dc.date.available |
2009-11-10T14:49:23Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Regular variation in the branching random walk / A. Iksanov, S. Polotskiy // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 38–54. — Бібліогр.: 25 назв.— англ. |
en_US |
dc.identifier.issn |
0321-3900 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/4440 |
|
dc.description.abstract |
initial ancestor located at the origin of the real line. For n = 0, 1, . . . , let Wn be the moment generating function of Mn normalized by its mean. Denote by AWn any of
the following random variables: maximal function, square function, L1 and a.s. limit
W, supn≥0 |W − Wn|, supn≥0 |Wn+1 − Wn|. Under mild moment restrictions and
the assumption that {W1 > x} regularly varies at ∞, it is proved that P{AWn > x}
regularly varies at ∞ with the same exponent. All the proofs given are non-analytic in the sense that these do not use Laplace–Stieltjes transforms. The result on the tail behaviour of W is established in two distinct ways. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Інститут математики НАН України |
en_US |
dc.title |
Regular variation in the branching random walk |
en_US |
dc.type |
Article |
en_US |
dc.status |
published earlier |
en_US |
dc.identifier.udc |
519.21 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті