Задачу бінарної класифікації зведено до мінімізації опуклих функціоналів регуляризованого емпіричного ризику у репродуктивному гільбертовому просторі. Розв’язок цієї задачі шукається у вигляді лінійної комбінації ядерних опорних функцій (метод опорних векторів Вапника). Отримано оцінки ризику помилкової класифікації як функції об’єму навчальної вибірки та інших параметрів моделі.
A binary classification problem is reduced to the minimization of convex regularized empirical risk functionals in a reproducing kernel Hilbert space. The solution is searched for in the form of a finite linear combination of kernel support functions (support vector machines of Vapnik). Risk estimates for a misclassification as a function of a training sample volume and other model parameters are obtained.