Показати простий запис статті

dc.contributor.author Alekseychuk, A.N.
dc.date.accessioned 2009-11-10T14:48:05Z
dc.date.available 2009-11-10T14:48:05Z
dc.date.issued 2006
dc.identifier.citation Random covers of finite homogeneous lattices / A.N. Alekseychuk // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 12–19. — Бібліогр.: 10 назв.— англ. en_US
dc.identifier.issn 0321-3900
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/4437
dc.description.abstract We develop and extend some results for the scheme of independent random elements distributed on a finite lattice. In particular, we introduce the concept of the cover of a homogeneous lattice Ln of rank n and derive the exact equations and estimations for the number of covers with a given number of blocks and for the total covers number of the lattice Ln. A theorem about the asymptotic normality of the blocks number in a random equiprobable cover of the lattice Ln is proved. The concept of the cover index of the lattice Ln, that extend the notion of the cover index of a finite set by its independent random subsets, is introduced. Applying the lattice moments method, the limit distribution as n→∞ for the cover index of a subspace lattice of the n-dimensional vector space over a finite field is determined. en_US
dc.language.iso en en_US
dc.publisher Інститут математики НАН України en_US
dc.title Random covers of finite homogeneous lattices en_US
dc.type Article en_US
dc.status published earlier en_US
dc.identifier.udc 519.21


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис