Показати простий запис статті
dc.contributor.author |
Alekseychuk, A.N. |
|
dc.date.accessioned |
2009-11-10T14:48:05Z |
|
dc.date.available |
2009-11-10T14:48:05Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Random covers of finite homogeneous lattices / A.N. Alekseychuk // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 12–19. — Бібліогр.: 10 назв.— англ. |
en_US |
dc.identifier.issn |
0321-3900 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/4437 |
|
dc.description.abstract |
We develop and extend some results for the scheme of independent random elements
distributed on a finite lattice. In particular, we introduce the concept of the cover of
a homogeneous lattice Ln of rank n and derive the exact equations and estimations
for the number of covers with a given number of blocks and for the total covers
number of the lattice Ln. A theorem about the asymptotic normality of the blocks
number in a random equiprobable cover of the lattice Ln is proved. The concept of
the cover index of the lattice Ln, that extend the notion of the cover index of a finite
set by its independent random subsets, is introduced. Applying the lattice moments
method, the limit distribution as n→∞ for the cover index of a subspace lattice of
the n-dimensional vector space over a finite field is determined. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Інститут математики НАН України |
en_US |
dc.title |
Random covers of finite homogeneous lattices |
en_US |
dc.type |
Article |
en_US |
dc.status |
published earlier |
en_US |
dc.identifier.udc |
519.21 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті