Показати простий запис статті
dc.contributor.author |
Buldygin, V.V. |
|
dc.contributor.author |
Klesov, O.I. |
|
dc.contributor.author |
Steinebach, J.G. |
|
dc.date.accessioned |
2009-11-09T15:30:54Z |
|
dc.date.available |
2009-11-09T15:30:54Z |
|
dc.date.issued |
2005 |
|
dc.identifier.citation |
PRV property and the asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 42–57. — Бібліогр.: 17 назв.— англ. |
en_US |
dc.identifier.issn |
0321-3900 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/4424 |
|
dc.description.abstract |
We consider the a.s. asymptotic behaviour of a solution of the stochastic differential
equation (SDE) dX(t) = g(X(t))dt + σ(X(t))dW(t), with X(0) ≡ b > 0, where g(.)
and σ(.) are positive continuous functions and W(.) is the standard Wiener process.
By applying the theory of PRV and PMPV functions, we find the conditions on g(.)
and σ(.), under which X(.) resp. f(X(.)) may be approximated a.s. on {X(t)→∞}
by μ(.) resp. f(μ(.)), where μ( ) is a solution of the deterministic differential equation
dμ(t) = g(μ(t))dt with μ(0) = b, and f(.) is a strictly increasing function. Moreover,
we consider the asymptotic behaviour of generalized renewal processes connected
with this SDE. |
en_US |
dc.description.sponsorship |
This work has partially been supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-3 and 436 UKR 113/68/0-1. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Інститут математики НАН України |
en_US |
dc.title |
PRV property and the asymptotic behaviour of solutions of stochastic differential equations |
en_US |
dc.type |
Article |
en_US |
dc.status |
published earlier |
en_US |
dc.identifier.udc |
519.21 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті