Показати простий запис статті
dc.contributor.author |
Ebrahimi Atani, S. |
|
dc.contributor.author |
Khoramdel, M. |
|
dc.contributor.author |
Dolati Pishhesari, S. |
|
dc.date.accessioned |
2023-02-27T15:51:56Z |
|
dc.date.available |
2023-02-27T15:51:56Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Modules in which every surjective endomorphism has a δ-small kernel / S. Ebrahimi Atani, M. Khoramdel, S. Dolati Pishhesari // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 170–189. — Бібліогр.: 18 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC: 16D10, 16D40, 16D90. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188409 |
|
dc.description.abstract |
In this paper,we introduce the notion of δ-Hopfian modules. We give some properties of these modules and provide a characterization of semisimple rings in terms of δ-Hopfian modules by proving that a ring R is semisimple if and only if every R-module is δ-Hopfian. Also, we show that for a ring R, δ(R) = J(R) if and only if for all R-modules, the conditions δ-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that δ-Hopfian property is a Morita invariant. Further, the δ-Hopficity of modules over truncated polynomial and triangular matrix rings are considered. |
uk_UA |
dc.description.sponsorship |
The authors express their deep gratitude to the referee for her/his helpful suggestions for the improvement of this work. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Modules in which every surjective endomorphism has a δ-small kernel |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті