Наукова електронна бібліотека
періодичних видань НАН України

On a quasistability radius for multicriteria integer linear programming problem of finding extremum solutions

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Emelichev, V.
dc.contributor.author Nikulin, Yu.
dc.date.accessioned 2021-11-17T14:04:35Z
dc.date.available 2021-11-17T14:04:35Z
dc.date.issued 2019
dc.identifier.citation On a quasistability radius for multicriteria integer linear programming problem of finding extremum solutions / V. Emelichev, Yu. Nikulin // Кибернетика и системный анализ. — 2019. — Т. 55, № 6. — С. 80-89. — Бібліогр.: 46 назв. — англ. uk_UA
dc.identifier.issn 1019-5262
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/181440
dc.description.abstract We consider a multicriteria integer linear programming problem with a targeting set of optimal solutions given by the set of all individual criterion minimizers (extrema). In this study, the lower and upper attainable bounds on the quasistability radius of the set of extremum solutions are obtained when solution and criterion spaces are endowed with different Hlder’s norms. As a corollary, an analytical formula for the quasistability radius is obtained for the case where criterion space is endowed with Chebyshev’s norm. Some computational challenges are also discussed. uk_UA
dc.description.abstract Рассматривается многокритериальная задача целочисленного линейного программирования с целевым набором оптимальных решений, каждое из которых минимизирует хотя бы один из критериев, т.е. является экстремумом. В данной работе нижние и верхние достижимые оценки радиуса квазиустойчивости множества экстремальных решений доказаны в ситуации, когда в пространствах решений и критериев заданы различные нормы Гёльдера. В качестве следствия получена аналитическая формула радиуса квазиустойчивости для случая, когда в пространстве критериев задана норма Чебышёва. В работе также кратко обсуждены некоторые вопросы, связанные с вычислимостью. uk_UA
dc.description.abstract Розглянуто багатокритерійну задачу цілочисельного лінійного програмування з цільовим набором оптимальних розв’язків, кожен з яких мінімізує хоча б один з критеріїв, тобто є екстремумом. Нижні та верхні досяжні оцінки радіуса квазістійкості множини екстремальних розв’язків доведено у ситуації, коли у просторах розв’язків та критеріїв задані різні норми Гeльдера. Як наслідок отримано аналітичну формулу для радіусу квазістійкості у випадку, коли у просторі критеріїв задана норма Чебишова. У роботі також коротко обговорюються деякі питання пов’язані з обчислюванністю. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут кібернетики ім. В.М. Глушкова НАН України uk_UA
dc.relation.ispartof Кибернетика и системный анализ
dc.subject Системний аналіз uk_UA
dc.title On a quasistability radius for multicriteria integer linear programming problem of finding extremum solutions uk_UA
dc.title.alternative О радиусе квазиустойчивости многокритериальной задачи целочисленного линейного программирования нахождения экстремальных решений uk_UA
dc.title.alternative Про радіус квазістійкості для багатокритерійної цілочисельної задачі лінійного програмування про знаходження екстремальних розв’язкі uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 519.8


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис