Наукова електронна бібліотека
періодичних видань НАН України

О нестационарной задаче управления движением в конфликтной ситуации

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Пепеляев, В.А.
dc.contributor.author Чикрий, Ал.А.
dc.contributor.author Чикрий, К.А.
dc.date.accessioned 2021-10-20T12:05:52Z
dc.date.available 2021-10-20T12:05:52Z
dc.date.issued 2019
dc.identifier.citation О нестационарной задаче управления движением в конфликтной ситуации / В.А. Пепеляев, Ал.А. Чикрий, К.А. Чикрий // Проблемы управления и информатики. — 2019. — № 4. — С. 84-93. — Бібліогр.: 28 назв. — рос. uk_UA
dc.identifier.issn 0572-2691
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/180822
dc.description.abstract Математическая теория управления в условиях конфликта и неопределенности содержит широкий круг фундаментальных методов для управления динамическими процессами различной природы. В этой статье изучена игровая задача преследования для нестационарных управляемых процессов общего вида с цилиндрическим терминальным множеством. Исследование тесно связано с первым прямым методом Л.С. Понтрягина и методом разрешающих функций. Целью работы является вывод достаточных условий завершения игры за некоторое гарантированное время в пользу первого игрока и выбор управления, реализующего этот результат. uk_UA
dc.description.abstract Математична теорія керування в умовах конфлікту та невизначеності нараховує широке коло фундаментальних методів для керування динамічними процесами різної природи. В даній роботі вивчається ігрова задача переслідування для нестаціонарних керованих процесів загального виду з циліндричною термінальною множиною. Дослідження тісно пов’язано з першим прямим методом Л.С. Понтрягіна та методом розв’язуючих функцій. Ціллю роботи є виведення достатніх умов закінчення гри за деякий гарантований час на користь першого гравця та вибір керування, що реалізує цей результат. uk_UA
dc.description.abstract Mathematical theory of control under conflict and uncertainty provides a wide range of fundamental methods to study controlled dynamic processes of various nature. In this paper the game problems of pursuit for nonstationary controlled processes of general type with cylindrical terminal set are considered. The investigation is closely related with the L.S. Pontryagin first direct method and the method of resolving functions. The purpose of the paper is to derive sufficient conditions for the game termination for some guaranteed time in favour of the first player and to provide the control realizing this result. uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут кібернетики ім. В.М. Глушкова НАН України uk_UA
dc.relation.ispartof Проблемы управления и информатики
dc.subject Конфликтно-управляемые процессы и методы принятия решений uk_UA
dc.title О нестационарной задаче управления движением в конфликтной ситуации uk_UA
dc.title.alternative Про нестаціонарну задачу керування рухом у конфліктній ситуації uk_UA
dc.title.alternative On nonstationary problem of motion control in conflict situation uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 517.977


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис