В настоящей работе решена задача Колмогорова–Никольского для обобщенного интеграла Пуассона на классах 2π-периодических функций, которые определяются с помощью первого модуля непрерывности.
Досліджено питання знаходження точної верхньої межі відхилення класів функцій, які визначаються за допомогою модуля неперервності першого порядку, від узагальнених інтегралів Пуассона. Зокрема отримано асимптотичні рівності для наближення функцій класів Гельдера їх узагальненими інтегралами Пуассона. Тим самим показано, що перехід від класів Hω до більш «тонких» класів функцій Гельдера H¹ забезпечує більш якісний розв’язок задачі Колмогорова–Нікольського для узагальнених інтегралів Пуассона в рівномірній метриці, що безпосередньо застосувується в математичному моделюванні та в математичних формалізаціях в певних типах задач в теорії ігор.
In this paper, we study the problem of finding the exact upper border of deviation of functions classes that are determined by a first order modulus of continuity, from their generalized Poisson integrals. In a partial case, the asymptotic equalities were obtained for an approximation of functions from the Hölder classes by their generalized Poisson integrals. Thereby it is shown, that a transition from classes Hω to the more susceptible Hölder classes H¹ provides more qualitative solution of the Kolmogorov–Nikol’skii problem for generalized Poisson integrals in the uniform metric, that has a direct application in mathematical modeling and in mathematical formalizations in certain types of problems in game theory.