Розглядається підхід до доведення фундаментальних результатів теорії рекурсивних функцій за допомогою використання конкретних алгоритмів. Для цього точно описуються основні конструкції алгоритму і переформульовується (конкретизується) теза Чорча для більш вузьких класів алгоритмічно обчислюваних функцій. За допомогою такого підходу належність функцій до класів алгоритмічно обчислюваних аргументується побудовою відповідних алгоритмів.
Рассматривается подход к доказательству фундаментальных результатов теории рекурсивных функций с помощью использования конкретных алгоритмов. Для этого точно описываются основные конструкции алгоритма и уточняется (конкретизируется) тезис Чорча для более узких классов алгоритмически вычислительных функций. С помощью такого подхода принадлежность функций к классам алгоритмически вычислимых аргументируется построением соответствующих алгоритмов.
An approach to proving the fundamental results of the theory of recursive functions using specific algorithms is consider. For this, the basic constructions of the algorithm are describing exactly and Church's thesis for more narrow classes of algorithmically computational functions is specified (concretized). Using this approach, the belonging of functions to classes of algorithmically computable is argued by the construction of the corresponding algorithms.