Let f : I → I be a continuous map of a compact interval I and C(I) be the hyperspace of all compact subintervals of I equipped with the Hausdorff metric. We investigate the existence of the fixed-point property of subsets of C(I) with respect to any induced interval map F : C(I) → C(I). In particular, we prove that any nonempty subcontinuum of C(I) has the fixed-point property.
Нехай f : I → I — неперервне вiдображення компактного iнтервалу I та C(I) — гiперпростiр усiх компактних пiдiнтервалiв I з метрикою Гаусдорфа. Вивчається властивiсть iснування нерухомої точки в пiдмножинах C(I) вiдносно iндукованого вiдображення F : C(I) → C(I). Зокрема, доведено, що будь-який непорожнiй пiдконтинуум C(I) має властивiсть iснування нерухомої точки.