Для полугруппы S множество всех изоморфизмов между подполугруппами полугруппы S относительно композиции является инверсным моноидом, который обозначается через PA(S) и называется моноидом локальных автоморфизмов полугруппы S. Полугруппа S называется переставной, если для любой пары конгруэнций p,σ на S p∘σ=σ∘p. В данной статье описана структура конечной коммутативной инверсной полугруппы и конечной связки, чьи моноиды локальных аавтоморфизмов являются переставными.
For a semigroup S, the set of all isomorphisms between the subsemigroups of the semigroup S with respect to composition is an inverse monoid denoted by PA(S) and called the monoid of local automorphisms of the semigroup S. The semigroup S is called permutable if, for any couple of congruences ρ and σ on S, we have ρ ∘ σ = σ ∘ ρ. We describe the structures of a finite commutative inverse semigroup and a finite bundle whose monoids of local automorphisms are permutable.