Для метричних просторів з інтегральною метрикою, визначеною функцією ψ типу модуля неперервності, доведено в багатовимірному випадку пряму та обернену теореми типу Джексона та Бернштейна для усереднених наближень періодичних функцій кусково-сталими функціями з рівномірним розбиттям тора періоду.
We prove the direct and inverse Jackson- and Bernstein-type theorems for averaged approximations of periodic functions of many variables by piecewise-constant functions with uniform partition of the period torus in metric spaces with integral metric given by a function ψ of the type of modulus of continuity.