For a group G and a natural number m, a subset A of G is called m-thin if, for each finite subset F of G, there exists a finite subset K of G such that |Fg ∩ A| ≤ m for all g ∈ G \ K. We show that each m-thin subset of an Abelian group G of cardinality ℵn, n = 0, 1, . . . can be split into ≤ mⁿ⁺¹ 1-thin subsets. On the other hand, we construct a group G of
cardinality ℵω and select a 2-thin subset of G which cannot be split into finitely many 1-thin subsets.
Нехай G — група, m — натуральне число. Пiдмножина A ⊆ G називається m-тонкою, якщо для кожної скiнченної
пiдмножини F групи G знайдеться така скiнченна пiдмножина K, що |F g ∩ A| ≤ m для всiх g ∈ G \ K. Доведено,
що m-тонку пiдмножину абелевої групи G потужностi ℵn, n = 0, 1, . . . , можна розбити на ≤ mⁿ⁺¹ 1-тонких
пiдмножин. Побудовано групу G потужностi ℵω i 2-тонку пiдмножину G, яку не можна розбити на скiнченне число
1-тонких пiдмножин.