Показати простий запис статті
dc.contributor.author |
Степанец, А.И. |
|
dc.contributor.author |
Сердюк, А.С. |
|
dc.contributor.author |
Шидлич, А.Л. |
|
dc.date.accessioned |
2020-02-11T12:05:09Z |
|
dc.date.available |
2020-02-11T12:05:09Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
Классификация бесконечно дифференцируемых периодических функций / А.И. Степанец, А.С. Сердюк, А.Л. Шидлич // Український математичний журнал. — 2008. — Т. 60, № 12. — С. 1686–1708. — Бібліогр.: 7 назв. — рос. |
uk_UA |
dc.identifier.issn |
1027-3190 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/164988 |
|
dc.description.abstract |
Вивчається множина D∞ нескінченно диференційовних періодичних функцій у термінах узагальнених ψ¯-похідних, що визначаються парою ψ¯=(ψ₁,ψ₂) послідовностей ψ₁ i ψ₂. Зокрема, показано, що кожна функція f, яка належить множині D∞, має хоча б одну похідну, параметри якої ψ₁ i ψ₂ спадають до нуля швидше за будь-яку степеневу функцію, і водночас для будь-якої функції f∈D∞, відмінної від тригонометричного полінома, знайдеться пара ψ, параметри ψ₁ i ψ₂ якої мають таку саму швидкість спадання i для якої ψ¯-похідна вже не існує. Встановлено також нові критерії належності 2π-періодичних дійснозначних на дійсній осі функцій множинам аналітичних на осі та цілих функцій. |
uk_UA |
dc.description.abstract |
The set D∞ of infinitely differentiable periodic functions is studied in terms of generalized ψ¯-derivatives defined by a pair ψ¯=(ψ₁,ψ₂) of sequences ψ₁ and ψ₂. In particular, we establish that every function f from the set D∞ has at least one derivative whose parameters ψ₁ and ψ₂ decrease faster than any power function. At the same time, for an arbitrary function f ∈ D∞ different from a trigonometric polynomial, there exists a pair ψ whose parameters ψ₁ and ψ₂ have the same rate of decrease and for which the ψ¯-derivative no longer exists. We also obtain new criteria for 2π-periodic functions real-valued on the real axis to belong to the set of functions analytic on the axis and to the set of entire functions. |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Український математичний журнал |
|
dc.subject |
Статті |
uk_UA |
dc.title |
Классификация бесконечно дифференцируемых периодических функций |
uk_UA |
dc.title.alternative |
Classification of infinitely differentiable periodic functions |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
517.5 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті