We show that a soluble group satisfying the minimal condition for its normal subgroups is co-hopfian and that a torsion-free finitely generated soluble group of finite rank is hopfian. The latter property is a consequence of a stronger result: in a minimax soluble group, the kernel of an endomorphism is finite if and only if its image is of finite index in the group.
Показано, що розв'язувана група, яка задовольняє умову мінімальності для її нормальних підгруп к кохопфовою і скінченнопороджена розв'язувана група скінченного рангу без скруту є хопфоною. Остання властивість є наслідком сильнішого результату: її мінімакснії розн'язувальній групі ядро ендоморфізму скінченне тоді і тільки тоді, коли його образ має скінченний індекс у групі.