Наукова електронна бібліотека
періодичних видань НАН України

О модифицированном сильном двоичном интеграле и производной

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Голубов, Б.И.
dc.date.accessioned 2020-02-07T21:41:48Z
dc.date.available 2020-02-07T21:41:48Z
dc.date.issued 2002
dc.identifier.citation О модифицированном сильном двоичном интеграле и производной / Б.И. Голубов // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 628–638. — Бібліогр.: 15 назв. — рос. uk_UA
dc.identifier.issn 1027-3190
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/164034
dc.description.abstract Для функцій f∈L(R₊) визначено модифікований сильний двійковий інтеграл J(f)∈L(R₊) та модифіковану сильну двійкову похідну D(f)∈L(R₊). Отримано необхідну та достатню умову існування модифікованої о сильного двійкового інтеграла J(f) . За умови ∫R₊f(x)dx=0 доведено рівності J(D(f))=f та D(J(f))=f. Знайдено зліченну множину власних функцій операторів J та D. Доведено, що лінійна оболонка L цієї множини є щільною у двійковому просторі Харді H(R₊). Для функцій f∈H(R₊) означено модифікований рівномірний двійковий інтеграл J(f)∈L∞(R₊). uk_UA
dc.description.abstract For functions f ∈ L(R₊), we define a modified strong dyadic integral J(f) ∈ L(R₊) and a modified strong dyadic derivative D(f) ∈ L(R₊). We establish a necessary and sufficient condition for the existence of the modified strong dyadic integral J(f). Under the condition ∫R₊f(x)dx = 0, we prove the equalities J(D(f)) = f and D(J(f)) = f. We find a countable set of eigenfunctions of the operators J and D. We prove that the linear span L of this set is dense in the dyadic Hardy space H(R₊). For the functions f ∈ H(R₊), we define a modified uniform dyadic integral J(f) ∈ L ∞(R₊). uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Український математичний журнал
dc.subject Статті uk_UA
dc.title О модифицированном сильном двоичном интеграле и производной uk_UA
dc.title.alternative On Modified Strong Dyadic Integral and Derivative uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 517.5


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис