Доведено, що оператори вигляду (2±2/n)I+K розкладаються в суму чотирьох ідемпотеитів при цілому n>1, якщо існує розклад K=K1⊕K2⊕...⊕Kn, ∑ⁿ₁ Kі=0. Для компактного опера тора K. Показано, що розклад компактного оператора K або оператора 4I+K в суму чотирьох ідемпотентів може існувати, тільки якщо K є скіпченповимірним. Якщо ntr K — досить велике (або досить мале) ціле число і K — скінченновиміриий, то оператор (2−2/n)I+K[or(2+2/n)I+K] є сумою чотирьох ідемпотентів.
We prove that operators of the form (2 ± 2/n)I + K are decomposable into a sum of four idempotents for integer n > 1 if there exists the decomposition K = K1 ⊕ K2 ⊕ ... ⊕ Kn, ∑ⁿ₁ Ki=0 , of a compact operator K. We show that the decomposition of the compact operator 4I + K or the operator K into a sum of four idempotents can exist if K is finite-dimensional. If n tr K is a sufficiently large (or sufficiently small) integer and K is finite-dimensional, then the operator (2 − 2/n)I + K [or (2 + 2/n)I + K] is a sum of four idempotents.