Для 2π-періодичної неперервної на R функції, що змінює знак у 2s точках y i ∈ [−π, π), доведено існування тригопометричного полінома Tn порядку ≤n, який змінює знак у тих самих точках yi і такий, що для відхилення | f(x)−Tn(x) | має місце друга нерівність Джексона.
We consider a 2π-periodic function f continuous on R and changing its sign at 2s points yi ∈ [−π, π). For this function, we prove the existence of a trigonometric polynomial Tn of degree ≤n that changes its sign at the same points yi and is such that the deviation | f(x) − Tn(x) | satisfies the second Jackson inequality.